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Executive Summary

In 2020, an Incidental Take Permit (ITP) was issued to the California Department of
Water Resources (DWR) by the California Department of Fish and Wildlife for
operation of the State Water Project. Condition of Approval (COA) 7.5.2 of this
permit requires DWR to lead an interagency Core Team, develop a modeling
approach for calculating annual juvenile production estimates (JPE) for spring-run
Chinook salmon (Oncorhynchus tshawytscha) (spring-run) produced in the
Sacramento River watershed. This chapter describes an important step toward this
objective: the estimation, for all years having adequate historical data, of spring-
run outmigrant abundance at all rotary screw trap (RSTs) sites in Sacramento River
tributaries where spring-run are present. These outmigrant abundance estimates
will be used to fit (i.e., calibrate parameters of) multiple candidate JPE models. The
abundance estimates and the dataset assembled to produce them will also be used
to improve the structure and accuracy of other existing and future models guiding
resource management in California’s Central Valley, including the suite of salmon
life cycle models produced by the interagency Science Integration Team, a technical
group tasked with guiding restoration funding of the Central Valley Project
Improvement Act. In addition, this chapter will aid the Core Team with an
additional required task: reviewing data produced by spring-run monitoring
programs in the Sacramento River watershed, and recommending adjustments and
augmentations to that monitoring to improve the ability of monitoring data to
support calculation of an annual JPE.

An extensive network of RSTs is used to monitor the abundance of outmigrant
juvenile Chinook salmon from streams and rivers in the Central Valley of California.
To estimate the abundance of outmigrants over a trapping period each year (i.e., a
run year), catches are expanded (i.e., divided) by the estimated proportion of fish
that are captured when passing the trap. This proportion, commonly referred to as
trap efficiency or capture probability, can be estimated from efficiency trials based
on mark-recapture. A variety of statistical modeling approaches can be used to
convert catch and efficiency trial data into estimates of capture probability and
abundance. However, there is no agreed-upon method for Central Valley RST data.
This limits the utility of RST information for many important goals, including
development of a JPE for spring-run from the Sacramento River and its tributaries.

This chapter describes a new model that estimates abundance of juvenile Chinook
salmon outmigrant abundance to support development of the spring-run JPE model.

Most RST programs use a two-sample mark-recapture approach to estimate
abundance of outmigrant juvenile salmon and steelhead (Oncorhynchus mykiss).
Fish are initially captured, marked and released upstream of the RST during the
first sampling period. A second sample is then taken from the population, which
consists now of both marked and unmarked fish. The ratio of marked fish
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recaptured on the second sample to the number of marked fish released on the first
sample is used to calculate capture probability during the second sampling period.
The number of unmarked fish on the second sample can then be expanded (i.e.,
divided) by the capture probability to estimate the total number of unmarked fish
passing the trap. The Peterson estimate is the simplest approach for analyzing such
data; it calculates abundance by dividing the total number of unmarked fish caught
over the trapping season by the average capture probability of the trap as
determined by all efficiency trials over the trapping season. However, this
unstratified Peterson estimate inherently assumes capture probability does not vary
over the trapping season, as we might expect would occur due to changes in flow,
water temperature, turbidity, or other factors. The stratified Peterson estimator
calculates abundance over shorter time intervals such as a week, and then sums
the weekly estimates to generate an annual value for the run year. This approach
avoids the assumption that capture probability is constant over time. However, it is
a data-intensive approach because it requires efficiency trial data (release of
marked fish) for all weeks in a trapping season. There are typically only a limited
number of trap efficiency trials within a run year for the majority of RST sites in
Central Valley streams, so applying a stratified Peterson estimator to the data to
estimate abundance for the entire run year is not possible.

To address challenges with data limitations in RST programs, Bonner and Schwarz
(2011) developed the Bayesian Temporally Stratified Population Analysis System
(BT-SPAS). This hierarchical Bayesian model (HBM) estimates capture probability
for each stratum (e.g., week) in a trapping season based on the available efficiency
trial data for that season. The approach provides a way to estimate capture
probability when there are missing efficiency trial data for some weekly strata. BT-
SPAS uses a spline method to estimate abundances, which improves precision of
abundance estimates when there is missing efficiency trial data or where existing
efficiency trial data is uninformative. The BT-SPAS spline approach does not
assume weekly abundance estimates are completely independent over time (i.e.,
over strata) like the stratified Peterson estimator does, so it can also estimate
abundance in strata that are not sampled. BT-SPAS was originally developed for
analyzing juvenile Chinook salmon RST data from the Trinity River in California
(Schwarz et al. 2009, Som and Pinnix 2014), and has since been applied to other
rivers in the Central Valley (e.g., Pilger et al. 2019) and elsewhere.

Data from Central Valley RST programs have some unique limitations that preclude
the use of BT-SPAS for the majority of RST site-run year cases. Thus, we developed
a modified version of BT-SPAS, called BT-SPAS-X, using “X” for extension) to
address these limitations in the Central Valley RST data. The main advancement
with the BT-SPAS-X model is that, when estimating abundance for a particular run
year and RST site, it uses efficiency trial data from all years for that site. Owing to
this approach, BT-SPAS-X provides more reliable estimates of capture probability
and abundance in the majority of years when no or a limited number of efficiency
trials are available. By considering efficiency trial data from all sites in the same
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model, BT-SPAS-X estimates the across-site variation in capture probability, which
allows prediction of capture probability and abundance at sites with no efficiency
trial data.

We applied BT-SPAS-X to 15 RST sites from seven Sacramento River tributaries
(Battle, Clear, Mill, Deer and Butte creeks, and Feather and Yuba rivers) where
spring-run are present. The model estimated outmigrant juvenile Chinook salmon
abundance based on the combined catch of fry and smolts for all run types. The
capture probability component of the model was fit to data from 1,056 efficiency
trials across 14 RST sites. The capture probability model included effects of site
location and flow. The estimated grand mean of capture probability across sites was
approximately 0.025 (i.e., 2.5%). There was a negative effect of increasing flow on
capture probability. Capture probability of hatchery-origin marked releases was
approximately 50% lower than capture probability for natural-origin releases.
However, origin of release was only recorded for 91 of 1,056 release trials (9%), so
this effect could not be included in the model. Surprisingly, there was no
relationship between average fork length of marked releases and capture
probability based on 467 trials where fork length was recorded, so fish size was not
included as a covariate in the model.

While the hierarchical model accounted for 99% of the variation in capture
probabilities observed across 1,056 efficiency trials, much of this variation was
explained by random effects. These effects do not contribute to the predictive
ability of the model when it is applied to the majority of weekly strata that do not
have trap efficiency data. Random effects are simulated for weeks without
efficiency data, leading to considerably greater uncertainty in capture probability
compared to weeks with efficiency data. For example, in Battle Creek, the predicted
capture probability in weeks with efficiency trial data at average flow was
approximately 0.05 with 95% credible intervals spanning approximately 0.04-0.06.
In contrast, in weeks with average flow but no efficiency trial data, the 95%
credible intervals ranged from approximately 0.02-0.15.

We estimated weekly capture probability, and weekly and annual outmigrant
abundance (all Chinook run types combined) for 170 different RST site-run year
cases. We modeled a 31-week run year from November 4 through May 27. We
compared weekly predictions of capture probability and abundance from BT-SPAS-X
with stratified Peterson estimates for weeks when they were available. Generally,
the model matched the Peterson estimates very well, and it appears to make
reasonable predictions for weeks that were not sampled or where efficiency trial
data were not available. Relative precision (that is, the coefficient of variation, or
CV) of annual abundance estimates averaged 26% across all RST sites and run
years. Mean precision of annual abundance estimates across RST sites ranged from
21-41%. There was also considerable variation in precision across run years within
RST sites. This variation was driven by the number of efficiency trials available, the
overlap weeks with both efficiency trials and high catch, and the patchiness of

DRAFT | Peer Review Purposes Only | Not for Citation
December 2025 iv



DRAFT | Peer Review Purposes Only | Not for Citation

weekly abundance estimates within run years. In general, uncertainty in the annual
abundance estimate was higher in years when the majority of the annual
abundance was concentrated in a limited number of weeks.

Estimates of the combined abundance of all run types of Chinook salmon by RST
site and week were converted to weekly estimates of spring-run abundance based
on estimated proportions of spring-run. These latter estimates were derived from
the probabilistic length-at-date (PLAD) model. There was strong seasonal variation
in the proportion of spring-run across weeks, but relatively precise estimates of the
proportion for any week. The uncertainty in the spring-run estimates was
sometimes greater than the all run type estimate because the precision of the
proportion predicted by PLAD could be relatively high. However, this effect varied
by RST site and was minimal when spring-run proportions were high (e.g., in upper
Clear Creek, or at Parrot-Phelan Dam).
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1 Introduction

Rotary screw traps (RSTs) are commonly used in streams and rivers to monitor the
abundance of outmigrating juvenile Chinook salmon (Oncorhynchus tshawytscha)
and steelhead (Oncorhynchus mykiss). An extensive network of RSTs is used to
monitor the abundance of outmigrating juvenile Chinook salmon from streams in
California’s Central Valley. To estimate the abundance of outmigrants over a
trapping period each year, catches are expanded (i.e., divided) by the estimated
proportion of fish that are captured when passing the trap. This proportion,
commonly referred to as trap efficiency or capture probability, can be estimated
from efficiency trial data. Efficiency can be challenging to estimate, and data to
estimate efficiency are frequently unavailable. A variety of statistical modeling
approaches can be used to convert catch and efficiency estimates into abundance,
but there is no agreed-upon method for estimating outmigrant abundance from
Central Valley RST data, though efforts have been made (McDonald and Mitchell
2020). This limits the utility of the RST data to evaluate differences in outmigrant
juvenile abundance across tributaries and changes over time. This in turn limits the
utility of RST information for many important goals, including development of a
juvenile production estimate (JPE) for spring-run Chinook salmon (spring-run) from
the Sacramento River and its tributaries.

This chapter describes a model that was developed to estimate weekly and annual
abundance of outmigrating Chinook salmon juveniles (for all run types combined
and only spring-run) based on RST data from tributaries of the Sacramento River.
We begin by providing background on how abundance estimates are typically
estimated from RST data (Section 2). We then outline specific limitations of Central
Valley RST data (Section 3), and describe a new model that can estimate
outmigrant abundance given these limitations (Section 4). We present results that
highlight key aspects of model behavior and show how well predictions of capture
probability and abundance fit the data (Section 5). We end by identifying future
work on the data and the model (Section 6). We also compare the model presented
here with a previous effort (McDonald and Mitchell 2020), and discuss
characteristics of a future model that could be applied to mainstem Sacramento
River RST data. Annual and weekly outmigrant abundance estimates will be an
important component of the spring-run JPE modeling effort. These abundance
estimates would also be available to researchers with other objectives, such as life
cycle modeling.
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2 Background

This section briefly describes mark-recapture approaches and provides background
and context needed to understand the model developed to analyze Central Valley
RST data (Section 4).

Central Valley RST programs use a two-sample mark-recapture approach to
estimate abundance of outmigrating juvenile Chinook salmon (Figure 1). Fish are
initially captured, marked and released during a first sample. A second sample is
then taken from the population that now consists of both marked and unmarked
fish. The number of marked and unmarked fish in the second sample is then used
to estimate the capture probability and abundance of fish that passed the trap
location. A variety of methods can be applied to this temporally stratified mark-
recapture data to estimate capture probability and abundance.

2.1 Unstratified Peterson Estimate

The simplest approach for estimating abundance from RST data is to divide the
total number of unmarked fish caught over the trapping season by the trap
efficiency:

Equation 1.

Where:
U is the estimated abundance of the unmarked population
u is the catch of unmarked fish, and

p is the trap efficiency, more commonly referred to in the mark-recapture
literature as capture probability (the proportion of animals captured).

Capture probability is estimated as the ratio of the number of marked fish that are
recaptured relative to the number of marked fish that are released, which we refer
to here as efficiency trial data. This model is more generally referred to as a two-
sample closed population model. The model is “closed” because it assumes that all
fish that are marked and released above a trap migrate pass the trap. That is, there
are no losses due to mortality prior to fish passing the trap, and that all fish resume
their downstream migration after release.
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2.2 Temporally Stratified Peterson Estimate

A critical assumption of the unstratified Peterson estimate is that capture
probability does not vary over the entire period when the trap is operated (i.e., a
trapping season from say November through May). In the case of the Central Valley
tributaries, river conditions (e.g., flow and turbidity) can vary substantially over the
trapping season, and these changes are expected to cause considerable variation in
capture probability. In more general mark-recapture terms, the unstratified model
does not account for heterogeneity (variability) in capture probability. As a result,
the estimate of abundance has the potential to be substantively biased, and the
uncertainty in the abundance estimate substantively underestimated. To address
this very significant limitation, a stratified estimator is used:

Equation 2.
u T =
Us = p_Z'pt = R_Z'U = ZEJUU
Where:

t is an index for each timestep (e.g., week).

Here the abundance for the entire trapping period (e.g., weeks 1 to the last week
T) is simply the sum of estimates across timesteps. Note this model allows capture
probability to vary over time (p has subscript t) and therefore deals with the
important heterogeneity issue.

The challenge in applying the stratified Peterson estimate to Central Valley RST
data, and in other systems, is that there may be no estimates of capture probability
for some strata (that is no marks released, or no efficiency trial data), or the
estimates may be very imprecise if few recaptures were obtained (either because
not enough fish were released, or the capture probability was very low). This
problem can be partially addressed through pooling, where some adjacent strata
with no or limited data on capture probability are combined, and perhaps pooled
with a stratum with more information (the Stratified Population Analysis System
[SPAS] model developed by Arnason et al. 1996). The challenge here is that
decisions on pooling can be somewhat arbitrary and can lead to unknown biases,
which will underestimate uncertainty for the pooled strata. The approach is also
time consuming to implement and different investigators may make different
decisions about which strata to pool, resulting in inconsistent abundance estimates
over years or across tributaries.

In the case of Central Valley RST data, as in many other systems, there are
circumstances where some temporal strata are not sampled because trapping could
not be conducted. There is ho way to estimate abundance for these missing strata
using the stratified Peterson estimator since there is no catch data (Equation 2).
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Inferences about differences in abundance over years in a river system, or across
systems, will be biased if there are substantial differences in the number of missing
strata.

2.3 Bayesian Temporally Stratified Population
Analysis System

Simon Bonner and Carl Schwarz developed BT-SPAS, a Bayesian approach to
estimate capture probability and abundance from temporally stratified mark-
recapture data. BT-SPAS addresses the limitations of the stratified Peterson
estimator (Bonner 2008, Bonner and Schwarz 2011). BT-SPAS was initially
developed to analyze RST data from the Trinity River in California (Schwarz et al.
2009), and is used in many systems, including the Stanislaus River (Pilger et al.
2019). BT-SPAS is a state-of-the-art method for analyzing RST data, and is
available as an R library. We describe this model in some detail here, as its core
elements are used in the model developed to estimate outmigrant abundance from
Central Valley RST data, BT-SPAS-X, presented in Section 4.

We begin by providing a brief overview of Bayesian models (Section 2.3.1). We
then describe the two fundamental components of BT-SPAS that predict capture
probability (Section 2.3.2) and abundance (Section 2.3.3). We conclude with a
discussion of the limitations of BT-SPAS in data-limited situations (Section 2.3.4).
Readers familiar with Bayesian statistics, hierarchal models, and BT-SPAS can skip
this section, as the structure of BT-SPAS-X is described in full in Section 4.

2.3.1 A Short Primer on Bayesian Modeling

The objective of Bayesian statistical models is to estimate the posterior probability
distribution of a parameter (e.g., capture probability or abundance at RST site X in
week t). The posterior distribution defines the probability for a range of parameter
values given prior information about potential values, and information about
parameter values from the data at hand. This is described by Bayes theorem, which
can be simplified to:

Equation 3.
P(a) < p(a) - L(data|a),
Where:

P(a) is the posterior probability of a parameter having a value of ‘a,” which is
proportional to the product of p(a), the prior probability of value ‘a,” and

L(datala), the likelihood of the observed data given a value of ‘a.’
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The prior distribution is often based on information from other studies about the
parameter. It is simply a statistical distribution (e.g., normal) that defines the
probabilities over a range of parameter values. The likelihood is a measure of how
well different values of the parameter fit the data the Bayesian model is applied to.

To provide a concrete example of Bayesian estimation, consider the estimation of
capture probability (p) of an RST over a specific week based on r recaptures from R
marked releases (efficiency trial data). The data likelihood computes the probability
of a value of p (represented by ‘a’ in Equation 3) given data observations r and R.
The prior probability could reflect our understanding of RST capture probability from
other traps, or the trap in question in different time periods. In an ideal case,
uninformative priors are typically used so that the data at hand defines the
estimate. In this case one might assume that any value of capture probability
between 0 and 1 is equally probable. This would be modeled by using a uniform
distribution. An uninformative prior generally allows the data to completely
determine the posterior probability. Alternatively, one might specify a more
informative prior described by say a normal distribution with a mean of 0.1 and a
variance o2. In this case the posterior will be influenced more substantively by the
prior if o2is low, implying there is more information in the prior distribution about
the value of capture probability. The net effect of the prior and the data likelihood
on the posterior depends on the relative differences in the amount of information
about the parameter from these two sources. A modestly informative prior will have
very little effect on the posterior if the amount of information about the parameter
in the data likelihood is large. Conversely, a relatively uninformative prior can have
an important influence on the posterior if there is very limited information about the
parameter in the data.

In the simplest applications of Bayesian models, information from other studies is
used to inform the prior distribution for the parameter of interest. The posterior is
then estimated using this fixed prior distribution as well as the data specific to the
study used in the data likelihood. However, in hierarchical Bayesian models (HBMs),
both the prior and the posterior distributions for the parameter(s) of interest are
jointly estimated. Consider the example where 10 efficiency trials are conducted
over 10 weeks to estimate the weekly capture probabilities for an RST. This would
result in 10 observations of recaptured marked fish rt=1:10, from 10 different groups
of released marked fish Rt=1:10. There are two obvious ways to use these data to
estimate capture probability. The simplest approach would be to pool the data by
summing r and R values across the 10 weekly trials, to calculate a single capture
probability (p = sum(r)/sum(R)). Alternatively, capture probability could be
calculated independently for each trial (pt = rt/Rt). The pooling approach assumes
no variability in capture probability across trials, which could lead to substantial
bias for trials that depart from the mean. However, the independent approach may
result in very unreliable (imprecise) estimates of capture probability for trials where
few recaptures are observed.
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HBMs offer a useful alternative to address the pooled vs. independent estimation
conundrum. HBMs jointly estimate the posterior and prior distributions. Using the
RST capture probability example from above, the prior distribution represents the
extent of variation in capture probability across the 10 weekly trials, while the data
likelihood represents the fit of 10 different capture probabilities given the 10
observations of r and R. In HBMs, the prior distribution used to estimate the p’s for
each trial is called a hyper-distribution. It represents the distribution from which the
trial-specific p’s are assumed to have come from, and is defined by hyper-
parameters, such as the mean and a variance for a normal distribution. If the data
indicate there is little variation in p’s across trials, the variance of the hyper-
distribution will be low, while the converse will be true if there is substantive
variation in p’s. Relative differences in information about p’s from the hyper-
distribution and the data determine the posterior distributions for the trial-specific
p’s. For example, if one of the trials has limited information about p because few
recaptures were observed, the p estimate will be more strongly influenced by the
hyper-distribution. Conversely, differences in the extent of information about p’s in
the data impact the estimates of hyper-parameter values. Trials with more
information about p have a greater influence on hyper-parameters than trials with
less information about p. In this example, the mean of the capture probability
hyper-distribution is essentially an information-weighted mean from all 10 mark-
recapture experiments. When estimating parameters of an HBM, there is no longer
a need to define a prior for the parameter of interest (trial-specific capture
probabilities). The hyper-parameters defining the hyper-distributions, which is the
prior for the 10 capture probability estimates, are directly estimated. Instead, priors
for the hyper-parameters must be defined.

A critical assumption in all HBMs is that the samples (say estimates of capture
probability from 10 weekly trials) are random draws from a common distribution.
Decisions on which observations arise from a common distribution must be made
thoughtfully. For example, it might be reasonable to assume that capture
probabilities from RSTs in tributaries of the Sacramento River come from a common
distribution that describes the extent of variability across tributaries. On the other
hand, it may not be reasonable to assume that capture probabilities from RST sites
on the mainstem Sacramento River belong in the same hyper-distribution
distribution used for tributaries. The much larger width and flow in the Sacramento
River likely leads to lower capture probability compared to sites in tributaries. Thus,
sites from tributaries and the mainstem would logically be assumed to arise from
different hyper-distributions.

2.3.2 Capture Probability Estimation in BT-SPAS

In the equations that follow, variables beginning with Greek letters represent
estimated parameters, bolded Roman letters represent data, and Roman subscripts
represent indices.
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Capture probability in BT-SPAS is estimated using an HBM. Here, each strata-
specific (e.g., weekly) estimate of capture probability within a trapping season is
assumed to be a random draw from a common distribution. This common
distribution, referred to as a hyper-distribution, represents the variation in capture
probability across strata during a trapping season (e.g., November of calendar year
2001 through May [inclusive] of calendar year 2002). Mathematically, this is
described as:

Equation 4.
logit(p,) ~norm(u,c?),

Where:
u is the mean of a normal hyper-distribution,
o? is its variance, and

logit() indicates that the resulting draw of capture probability p is in logit space,
and thus needs to be transformed prior to being used to estimate abundance.

The model is fit by jointly estimating the strata-specific capture probabilities pt, and
the hyper-parameters 1 and o. This is done using the following binomial data
likelihood,

Equation 5.
re~bin(pe, Rt),
Where:
~bin() indicates that the observed number of recaptures,

re is assumed to be a random draw from a binomial distribution with the
probability of success equal to pt, and

the number of trials equal to R..

This likelihood is the same as used to estimate the probability of obtaining say four
heads (equivalent to r) based on 10 coin tosses (equivalent to R). If the coin was
perfectly balanced, one would expect to obtain five heads on average, after
conducting many trials of 10 coin tosses. But due to random factors, an observation
of four heads from a single trial of 10 tosses would not be unexpected. The
certainty in the estimate of pt in this simple example would increase as the number
of tosses is increased, just as certainty in capture probability would increase with
the number of marks released. For a given number of coin tosses, certainty in the
estimate of pt will increase with the true value of pt. For example, if 100 marked
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fish are released, the certainty of the capture probability estimate will be much
higher if the true pt is 0.5, compared to 0.05.

The binomial likelihood properly accounts for sampling error from two-outcome
experiments, such as the flip of a coin (that can only be a head or a tail), or an
RST-based mark-recapture efficiency trial (a marked fish is either recaptured or not
recaptured). Sampling error must be accounted for when estimating trial-specific
capture probabilities and the hyper-parameters defining the distribution from which
they arise. Owing to differences in the number of fish released among weeks, or
differences in capture probability due to river conditions or other factors, the
certainty (i.e., sampling error) in the capture probability estimates across weeks
will differ. Logically, weeks with greater certainty in p should make a greater
contribution to the hyper-parameters compared to weeks when p is less certain.
The binomial likelihood appropriately weights each weekly capture probability
estimate in the estimation of the hyper-parameters. Conversely, the hyper-
distribution of capture probability can push-back on the weekly estimates. For
example, if the mean capture probability across 20 weeks is 0.2, and there is very
little variance across 19 of those weeks, a week with a capture probability of say
0.01 would be pulled toward the mean of 0.2, especially if there is substantive
uncertainty in that particular estimate (e.g., because only 1 marked fish of 100 was
recaptured). Here the HBM recognizes the high sampling error in the week with
only one recapture, and shrinks the estimate of capture probability toward the
mean of the hyper-distribution. However, if that estimate of 0.01 was more
strongly supported, say because 100 marked fish were recaptured from 10,000
releases, there would be little shrinkage and instead the mean and the variance of
hyper-distribution would change.

This HBM behavior is a very logical and common way of dealing with sparse or
missing data, such as the limited and sometimes sparse efficiency trial data to
estimate capture probability for Central Valley RSTs. HBMs are often described as
partial-pooling method because they find a happy medium between a pooled
estimate and independent estimates. In the RST context, the HBM approach will
provide more reliable estimates of trial-specific capture probabilities when the data
are sparse. Another significant advantage of the HBM approach in the RST context
is that it can predict capture probability for strata when no mark-recapture data are
available (e.g., Rt=0). In this case the estimated capture probability would be
determined from random draws from the hyper-distribution. It is also possible to
account for covariate effects on capture probability. For example, the mean of the
hyper-distribution x (Equation 4) could be predicted by the linear model:

Equation 6.

Ut = po + B Q.
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Here the mean of the hyper-distribution can be different for each weekly strata (),
and is calculated based on an estimated intercept (uo, equivalent to ¢ in Equation 4)
and an additive effect that is the product of a covariate value for that week, such as
mean flow Qt, and the estimated flow effect size, S.

2.3.3 Abundance Estimation in BT-SPAS

Estimates of abundance across strata based on the stratified Peterson model are
assumed to be totally independent. That is, an estimate of abundance in week ‘t’ in
no way depends on abundance in weeks ‘t-1" or ‘t+1’. BT-SPAS does not assume
that each strata-specific estimate is independent. It recognizes that temporal
variation in abundance may follow a pattern, so that abundances in adjacent strata
are more likely to be similar to each other than estimates separated by a longer
period of time. This assumption results in better estimates of abundance in strata
where data are sparse, and allows estimation of abundance in strata when no
sampling is conducted.

The data likelihood for capture probability and abundance in BT-SPAS share the
same form. The binomial likelihood used to estimate the abundance of unmarked
fish is:

Equation 7.
ut~dbin(pt, Ut)

Returning to the coin flip example, u represents the number of heads obtained from
U tosses, and p represents the probability of obtaining a head from a single coin
flip. Unlike the example used for capture probability, the number of tosses (U) is
unknown and is estimated given the observed number of heads (u) and an estimate
of the probability of obtaining a head from a single coin toss (p) as determined by
the capture probability model. This binomial likelihood will lead to more certainty in
the unmarked abundance estimate U if capture probability is more certain. And
even if capture probability is very precisely defined, abundance estimates will be
more certain if capture probability is higher compared to if it is lower.

The stratified Peterson estimator assumes that the U’s in Equation 2 are completely
independent. Thus, if an observation of u for a weekly stratum is missing,
unmarked abundance cannot be determined. In addition, if capture probability is
very low or highly uncertain, unmarked abundance will also be highly uncertain.
The assumption of non-independence of U’s in BT-SPAS addresses these

limitations. BT-SPAS uses a Bayesian penalized spline to predict U’s for each
stratum. The predicted U’s are then used with the estimates of capture probability p
from the HBM component of the model and compared to the observed unmarked
catch v via Equation 7. The likelihood provides the information for BT-SPAS to
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estimate the spline parameters predicting the U’s by fitting to the observations of
unmarked catch.

A spline is simply a set of polynomials joined or ‘splined’ together at a series of
knots (typically one knot for every four strata in a penalized spline application). A
cubic spline is a third-order polynomial (i.e., y = a + b*x + c*x~2 + d*X~3). In
common spline applications, the user defines a spline tension that specifies how
quickly the spline parameters can change across knots. In the penalized spline
case, the amount of information about variation in the dependent variable (Uts in
this case) determines the extent to which the spline parameters can vary. If there
is high certainty in Ut estimates, and they vary substantially over adjacent strata,
the spline will be more flexible and provide a good fit to the Uts. However, if
uncertainty in Ut estimates is higher, or if they are certain but do not vary much
across strata, the spline will not let its parameters vary as much, so the spline will
be stiffer and may not fit the Uts as well compared to the former example case.
Penalized splines essentially automatically tune the tension parameter that
determines spline smoothness.

The Bayesian P-spline implemented in BT-SPAS uses a B-spline basis function to
predict the log of unmarked abundance for each timestep:

Equation 8.
log(Us) = Eie2{ vie* Bugy + ve 1(20)

Where:
q is the order of the polynomial (q=3 for the cubic spline used in BT-SPAS),
k defines the index for each knot, and

K is the total number of knots. B is a pre-computed basis function that defines
the contribution of each spline parameter y for each strata t.

v, IS an extra-spline deviate drawn from a normal distribution with means
predicted by the spline estimates for each timestep ‘t’.

I(,20) limits the maximum value of predicted log abundance for each timestep
to 20 (approximately 485 million).

BT-SPAS assumes that the prior distributions of spline parameters vary according to
a second order random walk:

Equation 9.

Yk+1 — Yk = bYk — V-1 + Ok,
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Where:
8k is a normally-distributed random variable with mean 0 and variance a3.

Put more simply, the difference in adjacent spline coefficients at knots k and k+1 is
assumed to be related to the difference between values at k-1 and k. The extent of
similarity depends on the magnitude of the random normal deviate. If the deviates
are large, because o2 is large, the spline parameters can vary substantially across
knots, and the spline will be flexible. Conversely, if o7 is small, then the deviates
will be smaller, spline parameters will vary less, and the spline will be stiffer. The
certainty in Ut and its variability across strata determine the magnitude of the o3
estimate.

Patterns in outmigrant abundance over strata may follow a general shape that can
be well approximated by a spline. However, it is also possible that there are sudden
increases or decreases in outmigrant abundance across weeks due random factors,
or known factors such as a sudden increase in flow following a prolonged period of
low flow. In these cases, the spline would not fit the estimates of Ut near the rapid
transitions very well. To account for this issue, BT-SPAS estimates the extent of
extra-spline variation 3, to predict extra-spline deviates for each stratum. If there
is strong evidence for considerable extra-spline variation, the estimate of a3, will be
large and hence v, values will be large for some strata.

The penalized spline approach adopted in BT-SPAS is flexible in that model
complexity is automatically adjusted based on the amount of information in the
data. In statistics, models with more parameters are considered more complex.
These models will typically exhibit low bias, but may be imprecise in information-
poor situations because some parameters will be poorly defined if they do not have
a large influence on fit. Conversely, models with fewer parameters are considered
simpler and will make more precise predictions, but have the potential to be more
biased. Information theoretic approaches, like the familiar Akaike Information
Criteria (AIC), quantify the trade-off between bias and precision given the data at
hand. AIC can be used to identify a level of model complexity that strikes the best
balance between bias and precision, and therefore has the best predictive ability.
However, using an AIC-like approach requires testing a series of increasingly
complex models. BT-SPAS automatically adjusts model complexity via o2 and o2,
based on the information in the data about variation in Ut. Fits that result in more
flexible splines, or with higher extra-spline variation, resulting from more certain
estimates of Ut and extensive variation in Ut's across strata, represent a more
complex model. This approach estimates the optimal model complexity without any
user intervention.

DRAFT | Peer Review Purposes Only | Not for Citation
December 2025 11



DRAFT | Peer Review Purposes Only | Not for Citation

2.3.4 BT-SPAS Limitations

There are a few important limitations in BT-SPAS worth discussing in the context of
Central Valley RST data. First, the spline approach in BT-SPAS can make poor
predictions for strata when the trap was not operated, especially when capture
probability is uncertain. This leads to greater uncertainty in estimates of strata-
specific abundances that can lead to unreasonably high abundance estimates in
some cases. Second, the HBM approach used to estimate capture probability in BT-
SPAS requires a reasonable number (approximately 10) of informative efficiency
trials within a trapping season. It does not consider efficiency trial data from other
years in the estimation of capture probability for weeks within in a specific run year.
If there are too few trials for a trapping season of interest, or if most trials contain
little information about capture probability (e.g., because few recaptures were
observed), the model will struggle to estimate the hyper-parameters for the
capture probability hyper-distribution. For most Central Valley RST locations, the
majority of tributary and run years do not have a sufficient number of efficiency
trials to estimate the capture probability hyper-distribution. This data limitation will
be discussed more fully in the next section of this chapter. As a result of this data
limitation, a modified version of BT-SPAS (BT-SPAS-X) was developed to analyze
the Central Valley RST data.

There are a few related issues in the BT-SPAS documentation (Bonner and Schwarz
2011) and source code! worth reviewing in the context of the HBM and spline model
limitations identified above.

2.3.4.1 Missing Strata

Oddly, BT-SPAS includes strata with no data in the likelihood computation for
weekly abundance estimates (Equation 7). To do this, unmarked catch is set to 0
and a very low capture probability is assigned to the stratum. This approach
effectively creates a prior on the upper limit of abundance in these strata, since
increasingly large estimates of abundance are increasingly penalized (a catch of
zero would be unlikely at very high abundance even under the assumed very low
capture probability). This prior is both unintuitive and illogical. For strata that were
not sampled, the capture probability is unequivocally zero, and since there is no
catch data, there is no information about abundance based on data for the stratum.
A logical and more straightforward approach that is adopted in BT-SPAS-X, is not
assume catch is zero for unsampled weeks, and instead use an upper limit on
abundance for problematic strata. BT-SPAS also uses an upper limit on abundance,
which is not user-defined but instead hard-wired in the code as 20 in log space

1 https://github.com/cschwarz-stat-sfu-ca/BTSPAS/blob/master/R/
TimeStratPetersenDiagError.R
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(485 million). The very large prior on maximum abundance is not sufficient when
there is high uncertainty in capture probability.

2.3.4.2 Calculation of Capture Probability

A questionable formula is used to calculate the logit of capture probability for each
stratum in the BT-SPAS source code. The description of the model code (Bonner
and Schwarz 2011) indicates that the logit of capture probabilities is based on
random draws from a normal distribution. The mean for that hyper-distribution is
reported to be calculated solely from an estimated intercept and covariate effects if
specified by the user. However, examination of the source code (line 138 of code
specified in footnote) shows the strata-specific capture probability estimates are
adjusted based on the ratio of unmarked catch to estimated abundance. The
comment above the code is “ ## Matt's fix to improve mixing. Use u2copy to break the
cycle (this doesn't work??)”, Our limited understanding of the logic here is that
capture probability is logically informed by both r/R (recaptures/marked releases)
and u/U (unmarked catch to estimated unmarked abundance), and including the
latter somehow improves estimation properties.

The revised version of BT-SPAS we developed for Central Valley RST data does not
include this questionable adjustment in the capture probability computation, and
does not include missing strata in the data likelihood for capture probability. We
use a more direct approach where an upper limit on abundance for each model
week is specified as a constraint.
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3 Summary of Central Valley RST Data

A summary of the compiled data from Central Valley RST sites is provided here to
rationalize the need to modify BT-SPAS to account for limitations in the Central
Valley data.

Daily unmarked catch, and the daily number of marked fish that were released and
recaptured (efficiency trials) were aggregated into weekly strata. Examination of
daily recaptures showed that the vast majority of marked fish were recaptured
within a few days from release, and it was very rare for a recapture to occur more
than one week after release. Weekly values were organized into run years so that
the model could estimate abundance for each trapping season. Data from weeks in
November and December in calendar year ‘t-1’ were assigned the same run year as
weeks from January through end of May in calendar year ‘t’ (for run year ‘t"). This
is very similar to water year assignments, which group discharges from October
through December from one calendar year with discharges from January through
September in the next calendar year.

To apply BT-SPAS-X, the weeks to include for each run year must be defined. If
modeling abundance from November 4 in year t-1 to May 27 in year t, the model
would estimate abundance for 31 weeks. The model does not require that catch is
observed for each of these weeks because it can interpolate abundance for a limited
number of missing weeks. A total of 170 years of data are available across 15 sites
in our Central Valley RST data set for tributaries of the Sacramento River (Table 1).
Some sites, such as upper Battle Creek, Butte Creek, upper Clear Creek and lower
Clear Creek, have been sampled for approximately 20 years or more. We anticipate
that an iterative process is needed to inform the decision on the optimal run year
window and the minimal nhumber of sampled weeks within that window necessary to
include a run year in the modeled dataset for JPE model. A wide window (e.qg.,
October-June) would include all of the outmigrating spring-run juvenile abundance
for the year based on run periods defined by Cordoleani et al. (2021). However, the
wider the window, the greater number of years with missing weeks at the start or
end of the trapping season. A more truncated trapping season (e.g., the November
through May period) would reduce the number of missing weeks at the edges of the
season and would require less influential priors.

We compiled an extensive dataset of trap efficiency, with a total of 1,056 efficiency
trials from 14 RST sites (Table 2, Figure 1). The number of trap efficiency trials
within sites was highly variable, ranging from approximately 100-200 for
intensively sampled sites (Battle Creek, upper and lower Clear Creek, Eye Riffle,
Steep Riffle, and Herringer Riffle on the Feather River), to more modest numbers of
approximately 10-20, generally from sites where trap efficiency trials only began in
recent years (e.g., sites at Butte, Deer and Mill creeks). In most cases the sample
size of efficiency trials within site and run years was small. For example, Battle
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Creek has a total of 131 mark-recapture experiments across 18 run years.
However, the median number of experiments within a run year was only six, an
insufficient number for a successful implementation of BT-SPAS, which only
considers within-year efficiency trials in the estimation.

The expectation of capture probability for each efficiency trial (pt=ry/Rt) were
plotted for each RST site as a function of the number of marks released (Figure 2).
There is no reason to expect that capture probability will vary as a function of the
number of fish released. However, the certainty in the capture probability estimate
will increase with the number of marked fish released at a given capture
probability. We calculated the uncertainty in capture probability based on the
number of marked fish released (R) and capture probability (p) using the standard
binomial formula for relative variation in the number of recaptures:

Equation 10.
Cv = l__p,
R-p
Where:

cv is the coefficient of variation in the estimate of capture probability.

A smaller cv indicates greater precision in the estimate of capture probability, which
in turn reduces uncertainty in capture probability and abundance parameters in our
model. This equation demonstrates that precision in capture probability estimates
increases (i.e., cv decreases) with the number of marked fish released or with
capture probability, because an increase in either of these would result in a higher
number of recaptures. Thus, experiments conducted when capture probability is
high, and when many marks are released will have a higher number of recaptures
and higher precision (that is low cv values, upper-right quadrant of panels in

Figure 2), while experiments conducted when capture probability is low and when
few marks are released will have lower precision (lower-left quadrant). The square
root component of the Equation 10 indicates that there is a non-linear decrease in
precision as R or p values become smaller. Conversely, increases in R or p have
diminishingly positive effects on precision. This is why the spacing of the red
precision lines in Figure 2 increases when moving from the low-precision corner of
the plot (lower left) to the high-precision corner (upper right).

Figure 2 can be used by stream teams to make decisions on how many marked fish
to release for an efficiency trial to attain a target precision. The black horizontal
lines in the plots show the average capture probability for each site. Investigators
can use the contours to achieve at target precision of capture probability for an
efficiency trial. For example, to achieve a target precision of cv = 0.1 under the
typical capture probability at the Battle Creek RST site, about 3,000 marked fish
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must be released, while about 1,000 marked fish will achieve a precision of 0.25.
Note the diminishing returns to precision with increases in the number of marks
released as one works rightward on the x-axis. The majority of mark-recapture
experiments from RST sites in Sacramento River tributaries yielded relatively
precise estimates of capture probability (Table 3). For example, 76% of the 131
trials in Battle Creek had a cv equal to or less than 0.25. In contrast, most sites
with very low trap efficiency and/or with a low number of releases (Deer Creek,
Yuba River, Live Oak and Lower Feather sites on the Feather River) had low
proportions of high-precision efficiency trials.
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4 BT-SPAS-X: A Modified Version of BT-SPAS
to Address Data Limitations in Central Valley
RST Data

We developed a modified version of BT-SPAS, hereafter referred to as BT-SPAS-X,
to estimate the abundance of outmigrant juvenile Chinook salmon at RSTs in
tributaries of the Sacramento River in California’s Central Valley (Figure 1). The
revised model addresses unique data limitations in Central Valley RST data. Like
BT-SPAS, there are two major components of BT-SPAS-X. An HBM is used to
estimate capture probability for each weekly strata (Section 4.1), and a Bayesian
penalized spline model is used to estimate abundance given the catch of unmarked
fish and estimates of capture probability (Section 4.2).

In the equations that follow, variables beginning with Greek letters represent
estimated parameters, bolded Roman letters represent data, and Roman subscripts
represent indices of the variables (e.g., model week ‘t").

4.1 Capture Probability

4.1.1 Estimation

The capture probability component of BT-SPAS-X jointly estimates the capture
probabilities for all sites, years, and weeks by fitting the model to all available RST
mark-recapture data (efficiency trials) from Sacramento River tributaries. Like BT-
SPAS, it uses a hierarchical Bayesian modeling approach. Capture probability (p) at
RST site ‘s’ in year ‘y’ on week ‘w’ is predicted by:

Equation 11a.
10git(Psyw) = BSs + B_Qs* Qsyw T Esyws
Equation 11b.
&sy,w~dnorm(0, op)
Where:
logit indicates that capture probability is estimated in logit space,
A_S are estimated intercepts for each site s,
A_Q are estimated effects of flow on capture probability for each site,
Q is the average standardized flow for each site for year y and week w, and
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¢is a random effect drawn from a normal distribution with standard deviation op.
op represents the amount of variation in capture probability not explained by the
fixed effect g terms.

This is the unexplained variation that will also be referred to as process error. The ¢
terms are random effects that account for limitations of model structure to explain
the variance of the data (Barry et al. 2003). For example, the effect of flow on
capture probability may be different for weeks early in the run year compared to
later in the year. The use of random effects also avoids negative bias in variance
estimates resulting from pseudo-replication (Millar and Anderson 2004).

The parameter S _S predicts the extent of variation in the mean capture probability
among RST sites. The parameter g _Q predicts the effect of flow on capture
probability, and this effect is also allowed to vary across sites (hence the ‘s’
subscript). Flow values (Q) were centered and standardized by subtracting the
mean flow for the site across all years and weeks included in the estimation, and
then dividing by the standard deviation of all these weekly flow values. Thus, if flow
for a week was equal to the average value across all years and weeks, the
standardized value of Q is zero, and the average capture probability at site s is
determined only by g Ss and the random effect, because the product of g Qs Q
would be zero. Note that because flow was standardized to mean flow within each
site, rather than mean flow across all sites combined, the flow covariate effect
modifies capture probability based on variation in flow only within an RST site, and
does not predict variation in capture probability across sites. Therefore, differences
in capture probability at the mean flow for the site for each site is solely determined
by ,B_Ss.

Site-specific intercepts (5_S) and flow effects (#_Q) in the capture probability model
are assumed to come from common normal hyper-distributions:

Equation 12a.
B_Ss~dnorm(us, o5)
Equation 12b.
p_Qs~dnorm(ug, og)
Where:

the 4's represent the estimated across-site means of the hyper-distributions,
and

the o's represent their estimated standard deviations.
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We use uninformative normal prior distributions for the x's (mean 0 and variance of
1E06) and uninformative gamma distributions for the precision (1/variance) of the
distributions, which are then converted to priors for the o’'s. The partial pooling
created by the hierarchical structure of the site and flow effects provide better
predictions of 8 S and A#_Q estimates compared to models that assume these
parameters do not vary across sites (fully pooled), or that assume site-specific
parameters are completely independent of each other. With this modeling structure,
sampling from the hyper-distributions provides a logical way to account for the
additional uncertainty in estimates of capture probability for tributaries without any
efficiency trial data. Conversely, the hierarchical approach can improve precision at
sites with few trap efficiency trials.

The capture probability model was fit to the RST efficiency data using a binomial
data likelihood:

Equation 13.
Tsyw~binomial(ps yw, Rsyw)

Where:
r is the observed number of marked fish that were recaptured, and
R is the number of marked fish that were released.

The terms of the capture probability model (Equations 11 and 12) were estimated
by applying the model to all weekly observations of releases and recaptures across
14 RST sites in Sacramento River tributaries that had efficiency trial data (refer to
Table 3). Estimated site, year, and week deviates (ss,y,w) varied across observations
to provide a near perfect fit to the data (i.e., p values close to r/R). The deviates
can be thought of as residuals that are approximately the difference between the
observations of capture probability (r/R) and what was predicted by the g S, and
B_Q effects in the capture probability model (Equation 11). In simple linear
regression, the residuals are computed after the effects are calculated, and the
residual variance is then calculated from these values. Because we used a
hierarchical model, the deviates, called random effects, are jointly estimated along
with variance of the normal distribution that generates them, as well the other
parameters in the model. The model maximizes the posterior probability by
explaining as much of the variation in capture probability observations based on
£_S, and #_Q, and then picks up much of the remainder of the variation with the ¢
terms.

The data likelihood to fit the capture probability observations (Equation 13)
accounts for differences in the amount of information across-site, year, and weekly
strata. Strata with a more recaptures have more information about capture
probability. As a result, the model fit relied more on these observations compared
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to those from strata with less information about capture probability (i.e., strata in
which few recaptures were observed).

4.1.2 Applying the Model to Strata with no Efficiency Trial
Mark-recapture Data

The capture probability model in BT-SPAS-X can be used to predict capture
probability in weeks when no efficiency trial data available. For RST sites with some
trap efficiency data, the model predicts capture probability using site-specific
estimates of #_S and #_Q, the value for Q for the year and week being estimated,
and a random draw of an ¢ deviate from Equation 11b. If the unexplained process
error for the capture probability model (op) is high, the additional uncertainty
associated with the random ¢ draw will be considerable. As a result, the uncertainty
in capture probability for a week with no efficiency data will be much higher
compared a week with mark-recapture data. In the latter case, the ¢ deviate is
much better defined and so capture probability is more certain.

The capture probability model can also be applied to RST sites that have no
efficiency data at all. In this case, random draws of 8 S and A_Q from their hyper-
distributions (Equations 12a and 12b) are taken, and the approach described in the
previous paragraph is then implemented. Capture probabilities will be more
uncertain in this case because of the additional variance introduced through the
random draws of S and g _Q from their hyper-distributions.

The key difference between BT-SPAS and BT-SPAS-X with respect to capture
probability is that BT-SPAS-X jointly estimates it for all RST sites, trapping seasons
(run years), and weeks within each trapping season. In contrast, BT-SPAS
estimates weekly capture probabilities for each run year and site individually. By
jointly fitting to all the mark-recapture data, BT-SPAS-X makes more reliable
predictions of capture probability for sites with only limited number of efficiency
trials within a run year (Table 2). The model essentially borrows information from
all run years and weeks where efficiency trials were conducted, to estimate the
capture probability each particular, site, run year, and week. The structure of the
capture probability model presented here (Equation 11) can be modified in the
future, by adding covariates, to produce more reliable predictions. As will be shown
below, there is strong statistical support for capture probability models that
includes effects of RST site and flow. Other effects can easily be added to the model
and used to predict abundance if there is statistical support for them.
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4.2 Chinook Salmon Abundance (All Run Types)

4.2.1 The Spline Model

BT-SPAS-X estimates abundance for weekly strata based on the catch of all run
types of Chinook salmon using a Bayesian penalized spline model. This is the same
approach as BT-SPAS, but with the addition of a covariate effect to explain some of
the variation in abundance over weeks. The model predicting the log of unmarked
abundance in model week t is:

Equation 13.
log(Uy) = 221 vic - Biwy + @ Xsyw + Ve T(1gN_maxy),
Where:

g is the order of the polynomial (g = 3 for the cubic spline used in this
application),

k defines the index for each knot,
K is the total number of knots (one knot per four strata), and

t is an index for the weekly strata for the RST site and year that the model is
applied to.

B is a pre-computed basis function that defines the contribution of each spline
parameter y to the prediction of abundance for each weekly stratum. ¢ is an
estimated effect that allows extra-spline variation in abundance to vary as a linear
function of covariate value X (e.g., flow). n is a deviate that allows random extra
variation in abundance beyond what is predicted by the spline and covariate effects,
and will be described in more detail below. The log of unmarked abundance is
estimated in units of 1,000 for numerical precision, and converted to unlogged units
prior to use in the data likelihood (Equation 13). The T(, IgN_maxt) term limits
predicted abundance to a value no greater than IgN_max:. This constraint can be
set to a very high value so it has no effect on predictions, or a lower value for
specific strata to constrain unrealistically high values resulting from sparse data.

The model predicting the log of abundance by weekly strata (Equation 13) is the
same as in BT-SPAS except for the addition of a covariate effect (¢ - Xsyw). The
spline component of the prediction can be thought of as the intercept in a simpler
linear model. But rather than being a constant, it can vary in a smooth way across
weekly strata. The covariate effect allows the predicted weekly estimated log of
abundances to vary in a structured way around the spline-predicted intercepts
based on the covariate values. The covariate effect was added to test the
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hypotheses that occasional increases in flow can lead to an increase in outmigration
abundance. If this is the case, we would expect to see a positive estimate for ¢.
Note covariate values X could represent the within-tributary standardized average
weekly flow, or a derived variable, such as the difference in flow from the previous
week. Another alternative is to make X an indicator variable, taking on values of 0
or 1 if the relative flow increase is less than or greater than a specified threshold,
respectively. The current version of BT-SPAS-X does not include the ¢ - X5 w
element in Equation 13.

We assume that the prior distributions of spline parameters y vary according to a
second order random walk:

Equation 14a.

Yk+1 = Yk = Yk — Yk-1 T Ok for k=2:K,
Equation 14b.

S~dnorm(0, o)
Equation 14c.

Yk=12~df lat()
Where:

& is a normally-distributed random variable with mean 0 and standard deviation
Ou.

Put more simply, the difference in adjacent spline parameters from knot k to k+1 is
assumed to be related to the difference between values k-1 and k. The extent of
the difference depends on the magnitude of the random normal deviates é&. If the
deviates are large, because ou is large, the spline parameters can vary substantially
across knots, and the spline will be flexible. Conversely, if ou is small, then the
deviates will be smaller and spline parameters will vary less and the spline will be
stiffer. The certainty in Ut and its variability across strata determine the magnitude
of the ou estimate. Different priors for spline coefficients are needed for the fist two
values of k. BT-SPAS uses a flat prior for k = 1 and 2. A flat prior predicts the same
prior probabilities for all values of y1 and ..

Patterns in outmigrant abundance over strata may follow a general shape that can
be well approximated by a spline and perhaps even covariate effects such as flow.
However, it is also possible that there are sudden increases or decreases in
outmigrant abundance due random factors not accounted for in the abundance
equation. In these cases, the spline and covariate effects would not fit the
estimates of Ut well. To account for this possibility, extra-spline deviates for each
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stratum, w, are drawn from a normal distribution with estimated standard deviation
OUe.

Equation 15.
Ve~dnorm(pyt, Oye)
Where:
uue is the prediction from Equation 13 excluding wu values.

If there is strong evidence for considerable extra-spline variation based on the
pattern of Ut values, the estimate of oue will be larger to allow 1t values to be more
variable across strata. Although oue is sometimes referred to by the term “extra-
spline variation,” this term is only accurate if the covariate effect in Equation 13 is
not estimated. If a covariate effect is estimated, oue is more accurately defined as
the “additional variation” not explained by both the spline and covariate effects.
However, for brevity we use the term “extra-spline variation” for both cases. Like
BT-SPAS, BT-SPAS-X uses uninformative gamma priors for the inverse of spline and
extra-spline variances,

Equation 16a.
oy %~dgamma(1,0.05)
Equation 16b.
o3i~dgamma(1,0.05)

Parameter values that predict abundance (Equation 13) are estimated by
comparing the abundance estimates to the catch data given the estimates of
capture probability using:

Equation 17.
u~dbin(m, Uy)
Where:
n are weekly estimates of capture probability generated from Equation 18 below.

Note that values of ur are adjusted to account for differences in trapping effort prior
to running the model. To do this, the average number of hours a trap is fished each
week (effort) over the modeled period (e.g., November-May) is computed for all
run years for the tributary being modeled. If more than one trap is fished the sum
of hours across both traps is used in computing the average. The adjust weekly
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catch is calculated as the product of the observed weekly catch and the ratio of the
weekly effort (hours fished over week) to the average effort.

Capture probabilities (nt) used in the abundance model are estimated from:
Equation 18.

logit(m)~dnorm(uy,, 0p,)
Where:

p and o terms are the weekly mean and standard deviation of weekly capture
probabilities in logit space estimated from the posterior distributions of logit-
transformed capture probability estimates generated by the capture probability
model (Figure 3).

Note p and o are treated as data in the abundance model (Figure 3). We use the
cut() function in the Bayesian inference using Gibbs sampling (BUGS) modeling
software so that predictions of = are not influenced by the fitting of u (unmarked
catch) in the abundance model.

4.3 Estimation of Spring-run Chinook Salmon
Abundance
A PLAD model (Chapter 6) is used to convert weekly estimates of total Chinook

salmon abundance for any site and run year (Section 4-2) into estimates of spring-
run abundance (srUt) using,

Equation 19.
srU; = U - sTP;
Where:
srP; is the PLAD-based estimate of the spring-run proportion in week t.

The PLAD estimates of srP: are fit to site-specific genetic data and the length
frequency of the RST catch in each week. To date, PLAD results from Sacramento
River tributaries are available for RST sites at Battle Creek, upper and lower Clear
Creek, Mill Creek, Deer Creek, Butte Creek, and Yuba River (Figure 1). Additional
work (in progress) is needed to apply the model to RST sites on the Feather River
(refer to the discussion of Feather River in Chapter 3).
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4.4 Estimation

The model estimates the parameters that predict weekly abundance of Chinook
salmon Ut for all weeks for a given RST site and run year. The model is run in three
parts. First, the capture probability component of the model is run (Figure 3). This
model estimates capture probability for all weekly efficiency trials from all RST sites
and the hyper-parameters from which they are calculated. Second, the posterior
distributions of these parameters are passed to an R script to calculate capture
probability for each week of the site-run year being modeled. Finally, the means
and standard deviations of weekly capture probabilities generated from the script
are read-in by the abundance component of the model to estimate weekly and
annual abundance. This approach ensures that the abundance component of the
model does not influence the parameters determining capture probability (hence
the red triangle in Figure 3). Thus, capture probability parameters that determine
weekly values for any site and run year will be the same for all site and run year
cases.

Posterior distributions of the capture probability model were estimated using stan
statistical software (version 3.35.0; Stan Development Team 2024) called from the
rstan library (version 2.35.0) from R (version 4.4.1; R Core Team 2024). Posterior
distributions were based on 10,000 simulations per chain. Convergence was
evaluated based on Gelman and Rubin’s (1992) scale reduction factor. Weekly and
annual abundance were estimated using the BUGS software (Spiegelhalter et al.
1999) called from the R2WinBUGS (Sturtz et al. 2005) library. BUGS was used
because it contains a cut() function that does not allow estimates of abundance to
influence weekly capture probability values. Posterior distributions were based on
taking every second sample from each of three chains from a total of 2,000
simulations per chain, after excluding the first 500 burn-in samples to remove the
effects of initial values. These sampling characteristics were sufficient to achieve
adequate model convergence as evaluated using the Gleman and Rubin scale
reduction factor.

The model was applied to weekly catch data for Chinook salmon of all run types if
designated as a fry or smolt life stage. Estimates of the spring-run proportion for
each RST site, run year, and week, derived from the PLAD model, were multiplied
by the total Chinook salmon weekly abundance estimates from BT-SPAS-X to
estimate the abundance of spring-run (Equation 18). To do this, each posterior
sample of weekly total Chinook salmon abundance was multiplied by a random
sample from the posterior distribution of the spring-run proportion from PLAD in
that week. Thus, the calculation of weekly spring-run abundance accounts for
uncertainty in the PLAD-based spring-run proportions. Weekly PLAD predictions are
made based on the size distribution of fry only, smolts only, or the combined size
distributions. As this chapter uses the combined catch of weekly fry and smolt
counts, we used the combined PLAD predictions.
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5 Application of BT-SPAS-X to Estimate
Capture Probability and Outmigrant
Abundance in Sacramento River Tributaries

5.1 Data Used in Modeling

For the purposes of this review, we modeled an outmigration period of November 4
through May 27 (31 weeks). BT-SPAS-X was applied to data from 170 run years
across 15 RST sites (Table 1, Figure 1).

5.2 Capture Probability Model Results

Predictions of 1,056 trap efficiencies from Equation 11 fit the observed capture
probabilities (r/R) very well (r’=0.99). The excellent fit occurred because the
capture probability model estimates efficiency trial-specific random effect deviates.
Parameter estimates from the model indicate substantial variation in capture
probability among sites and with flow. The transformed mean of the hyper-
distribution for site effects (us) was 0.025 (Figure 4a). The mean estimates of S
(closed points) were generally very close to the expected capture probabilities for
each site (open points), calculated by taking the ratio of the sum of recaptures and
releases across all efficiency trials within each site (i.e., the expected values). There
was evidence for modest statistical shrinkage toward the mean for Butte Creek and
the Steep Riffle site on the Feather River. These sites had unusually high trap
efficiencies compared to the majority of others due to unique trapping conditions.
These sites may therefore not be statistically exchangeable with the others, a key
assumption with the hierarchical modeling approach in BT-SPAS-X. Abundance
estimates at these two sites could be overestimated in some years because capture
probabilities could be underestimated. We therefore implemented an alternate
structure where we assumed the mean capture probabilities for these sites (B_S)
are independent (not exchangeable), rather than random variables drawn from a
common hyper-distribution (Figure 4b). This change led to a narrower hyper-
distribution and better alignment of expected (blue points) and modeled (black
points) estimates for the two non-exchangeable sites.

There was evidence for a negative effect of discharge on capture probability for
some of the RST sites with trap efficiency data (Figure 5a). In a few cases (at Battle
Creek, upper and lower Clear Creek, Mill Creek, and Herringer Riffle site on the
Feather River) trap efficiencies were measured across a wide range of flows,
providing a relatively convincing pattern of effect. However, in most cases trap
efficiencies were mostly measured at a discharge near the mean, providing
insufficient contrast in flow across efficiency trials to reliably estimate a flow effect.
The hyper-distribution of the flow effect, estimated largely from the more
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informative sites, dominated the site-specific flow effect estimates for sites without
an adequate range of flows. Results for Butte Creek provide an illustrative example.
When the prior for flow slope for this site (and Steep Riffle on the Feather River)
was based on the hyper-distribution, the effect of flow on capture probability was
negative (Figure 5a). In contrast, when these sites were considered non-
exchangeable with the others, the flow slope was positive and considerably more
uncertain (Figure 5b).

We examined the effect of fish size on capture probability. To do this, the dataset
was trimmed from 1,056 to 467 records where average fork length of fish released
in efficiency trials was recorded (Figure 6). Surprisingly, there was no apparent
effect of fish size on capture probability. Owing to the reduction in sample size if
modeling a fish size effect, and this pattern, we did not test a model that include a
fish size effect on capture probability.

Capture probabilities for hatchery-origin releases in efficiency trials were
approximately 50% lower than those based on releases of natural-origin fish
(Figure 7). However, the origin of releases was only recorded for 91 of 1,056 trap
efficiency trials. The majority of trials where origin was recorded (86) came from
only one site (Battle Creek). A potential effect of fish size on capture probability
could confound effects of origin. However, this did not appear to be the cases as
smaller hatchery-origin fish released at Battle Creek had lower capture probability
compared to natural-origin fish of approximately the same size range. Owing to the
limited sample size for trap efficiency data where origin was specified, we did not
include origin as an effect in the capture probability model.

5.3 Capture Probability and Abundance Estimates by
Run Year

We examined model predictions of weekly capture probability and abundance for a
select set of RST sites and run years. The intent is to demonstrate critical aspects of
model behavior under data-rich and data-poor conditions. Model predictions are
compared to stratified Peterson estimates in weeks when mark-recapture data are
available. The majority of results are based on the combined catch of all juvenile
(fry and smolt life stages) Chinook salmon run types. Predictions of spring-run
abundance require additional calculations using estimates of spring-run proportions
from the PLAD model, which is currently only available for a single site and run
years. Thus, this chapter focuses on abundance predictions across all run types, but
provides predictions of spring-run abundance for a single case where the PLAD
model to demonstrate the approach.

Results presented here are based on a prior that sets an upper limit on the log of
predicted weekly unmarked abundance (IgN_max in Equation 13). For any RST site
and run year, the weekly priors are calculated from:

DRAFT | Peer Review Purposes Only | Not for Citation
December 2025 27



DRAFT | Peer Review Purposes Only | Not for Citation

Equation 20.

u + 1) - 0.001
IgN_max, = log (%)
The unmarked catch for each stratum was converted to units of thousands and
divided by an assumed minimum capture probability (0.005, 0.5%), and then
converted to log space. The average of IgN_max over a trapping season in a given
run year was used to calculate the abundance constraint for weeks that were not
sampled (i.e., when observations of ut were not available). This is a simple rule that
is easy to modify. BT_SPAS uses a constant maximum constraint on log abundance
of 20. The approach adopted BT-SPAS-X (Equation 20) allows this constraint to
vary over sites and weekly strata.

The 2008 run year for Battle Creek is a relatively data-rich case with trap efficiency
data for 16 of 31 strata (Figure 8a, Table 2). Model predictions of capture
probability in these strata (grey bars in bottom panel) matched the Peterson
estimates (open blue points) very well. Small discrepancies occurred when there
was limited information in the efficiency data, such as when 4 of 254 marked fish
were recaptured in the week starting Dec-23. The r/R Peterson estimate (4/254) is
uncertain for this stratum owing to the low number of recoveries, so the model
pulled the estimate upwards toward the expectation predicted by the capture
probability model given the estimated site and flow effects. In weekly strata without
efficiency data, model predictions were solely driven by capture probability
parameters (Equation 11a) and random draws of process error deviates

(Equation 11b, red bars in Figure 8a). Logically, this resulted in considerably wider
95% credible intervals for both capture probability and abundance estimates
relative to strata with informative efficiency trial data. The variation in the height of
the red bars for capture probability across strata (indicating a lack of efficiency trial
data) was driven by predicted flow effects, with lower capture probability when
flows were high, and visa-versa (Figure 5). More discharge-driven variation in
capture probability would be seen in run years with greater variation in flow across
weeks, or at sites where flow effects were stronger. As expected, capture
probability was less certain for periods without efficiency trial data (e.g.,

December 30), which resulted in greater uncertainty in weekly abundance
estimates, and was more certain for periods with efficiency trial data (e.g.,
December 23).

Weekly abundance estimates from BT-SPAS-X fit the Peterson estimates very well
for the Battle Creek 2008 run year. Uncertainty in the total abundance estimate for
the run year depended on the number of efficiency trials and the degree of overlap
in weeks with efficiency data and high catch. For example, the relative variation in
the abundance estimate for run year 2017 at Battle Creek was relatively high
(Figure 8b, CV = 36%). This occurred because there were only four weeks with
efficiency data and they occurred in weeks with relatively low catches. As a result,
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the uncertainty in capture probability for weeks with high catch was higher,
resulting in greater uncertainty in the annual estimate. Contrast this situation with
Battle Creek in 2008, which had a relatively precise annual estimate (CV = 20%)
because there were many more weeks with efficiency data, and almost all weeks
with high catch had efficiency data (Figure 8a).

Statistical shrinkage in capture probability estimates in weeks with efficiency trial
data had have substantive effects on weekly abundance estimates. Consider
estimates for lower Clear Creek for run year 2007 (Figure 8c). There were only
three recaptures from 389 releases in the week beginning February 12. Note that
the point estimate of capture probability (r/R) was less than half of the model-
based estimate. The model shrunk capture probability toward the mean because
there was very little information in the data owing to the low number of recaptures,
and because the point estimate was unusually low for this site given the discharge.
As a result of the higher capture probability from the model, the model-based
estimate of abundance was considerably lower than the point estimate.

Estimates from lower Clear Creek in 2008 show model predictions for a case with
lots of information in the data. (Figure 8d). Here the uncertainty in the annual
estimates is low (CV = 10%) because there were many weeks with efficiency data,
the precision of weekly estimates of capture probability was always high owing to
large number of recaptures, and because weeks with high catch had reliable
estimates of capture probability. The model reliably reproduced the Peterson
estimates of capture probability and abundance in this situation.

Estimates for lower Clear Creek for run year 2003 provides and example of a low
information case with no efficiency trial data (Figure 8e). Note the very large
uncertainty in weekly abundance estimates driven by the high uncertainty in
capture probability. For example, on the week beginning January 15 the 95%
credible interval for the abundance estimate ranged from approximately 10,000 to
6,000,000 fish. The upper limit was so high because the prior on maximum
abundance was based on expanding the catch by an assumed minimum capture
probability of 0.005. While uncertainty in weekly abundance estimates was high,
the uncertainty for the annual estimate was reasonable (CV = 28%). This occurred
because the variance of a summed value (e.g., sum of abundance across all weeks
in the run year) is the sum of its individual variances. Relative variation (in CV) is
the ratio of the standard deviation and the mean. As the standard deviation is the
square root of the variance, relative variation in the annual estimate declines with
increases in the number of weeks contributing to the annual estimate (not relatively
high catches for many of the 31 weeks in the run year. Results from lower Clear
Creek for run year 2020 provide an example of model predictions with a set of
continuous weeks without catch data (Figure 8f). The spline component of BT-
SPAS-X interpolates abundance for these missing weeks. Given the declining trend
in abundance predictions over the last five weeks that were sampled, the model
logically interpolates a declining trend for the remaining weeks with no catch data.
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Predictions for all sites and run years with sufficient data to run the model are
provided in Appendix A. Across all sites and years that were modeled, the mean
precision of annual estimates was reasonably high (CV = 0.26, Table 4). The
precision of annual estimates depended on a number of factors including the mean
capture probability for the site, the number of trap efficiency trials within a year,
the number of weeks with both efficiency data and high catch, and the distribution
of catches across the run year. For example, catch at Butte Creek was often
concentrated in a limited number of weeks (refer to Appendix A). As a result, the
precision of the annual estimate of abundance depended more heavily on the lower
weekly precision of abundance estimates from a more limited number of weeks. In
addition, while capture probability at Butte Creek was high, potentially leading to
more precise abundance estimates, the sample size of trap efficiency trials was low
(Table 3). This led to greater uncertainty in capture probability and hence greater
uncertainty in abundance estimates.

Annual time series of abundance estimates for Chinook outmigrants (all run types
combined) are provided in Figure 9. Annual time series of spring-run juvenile
outmigrant abundance from Sacramento River tributaries will be a fundamental
component of the spring-run JPE model that is being developed. An example of
predictions of spring-run proportions by week from the PLAD model for lower Clear
Creek in 2018 is provided (Figure 10, refer to Appendix B for full set). Predictions of
spring-run proportions at lower Clear Creek in 2018 show a decline in the
proportion over the month of January, with moderate precision in weekly estimates
(middle panel). The relative error in the annual estimate of spring-run outmigrants
(CV = 27%, bottom panel) was higher than the relative error in the estimate for
the abundance of all run types (CV = 18%) owing to the uncertainty in weekly
spring-run proportions. Predictions of weekly outmigrant abundance and spring-run
proportions for all sites and run years with sufficient data are provided in

Appendix B. Annual time series for spring-run Chinook outmigrants are provided in
Figure 11. Estimates of spring-run proportions at lower Clear Creek were likely too
high. This probable bias resulted in a multi-year average juvenile outmigrant
abundance at lower Clear Creek that was 15-fold higher than the average from
upper Clear Creek (Figure 12). Although some spring-run may spawn downstream
of the upper Clear Creek RST site, it is highly improbably that this would explain the
large difference in abundance estimates. More likely, the PLAD model is incorrectly
assigning some fall-run fish to the spring run.
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6 Conclusions

6.1 Future Work, Review, and Guidance on Monitoring

Initial testing and evaluation of BT-SPAS-X indicates it is a suitable tool for
translating available RST data from Sacramento River tributaries into weekly and
annual estimates of juvenile Chinook salmon outmigrant abundance. Annual
estimates of spring-run juvenile outmigrant abundance are an essential component
for the spring-run Chinook JPE model.

We anticipate a number of activities to advance the tributary-based outmigration
abundance model and its application:

1. The JPE data management team and stream teams will continue to develop the
RST database. This work includes adding data that are already collected, adding
future data as they becomes available, and filling in missing data in previous
versions of the dataset to the extent possible.

Exploration of the effects of priors (IgN_max) on predicted weekly and annual
abundance estimates.

2. The method to include a flow effect on spline-based weekly abundance
estimates (Equation 13) has not been implemented yet. We expect there may
be limited information with a run year to estimate the effect, perhaps requiring
joint estimation of all run years from the same site. This modification would be a
substantial undertaking.

3. Predictions of spring-run abundance need to be generated for RST sites that will
be used in JPE model development. Additional work on the PLAD model for RST
sites on the Feather River is ongoing. Three additional years for Yuba River need
to be run through PLAD.

BT-SPAS-X can be used to provide guidance on future sampling to improve the
reliability of future RST data. At a qualitative level, recommendations based on
results from this chapter include:

1. Conduct mark-recapture efficiency trials in every year at every RST site when
possible. Use the historical estimates of capture probability and the precision
tools provided here (Figure 2) to determine how many marked fish to release for
each efficiency trial to achieve a target precision (e.g. cv less than or equal to
0.25). Collection of mark-recapture data in tributaries few trials is particularly
important.

2. To the extent possible, ensure efficiency trials are conducted in weeks when
catch is anticipated to be elevated. Conducting efficiency trial experiments in
weeks with low catch does not lead to significant improvements in the precision
of the annual estimate, though it does contribute to the broader capture
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probability model. However, given the current large sample size of efficiency
trials for May, sites we do not expect parameter values of the capture probability
model to change much as more data is added. Closer examination of the
predicted variation in weekly abundance estimates over years estimated by BT-
SPAS-X can provide guidance on the best time to conduct efficiency trials to
maximize precision of annual estimates.

3. Conduct efficiency trials over a wide range of discharges to better inform
estimates of the effect of discharge on capture probability. The relationships
provided in this chapter can provide guidance on how many marked fish should
be released for efficiency trials under more challenging high discharge
conditions. For example, capture probability at lower Clear Creek at flows two
standard deviations greater than the mean are approximately 0.025 (Figure 5).
A horizontal line at 0.025 can be drawn on Figure 2 to determine how many fish
must be marked and released to meet a target precision.

4. To the extent possible, sample every stratum within the defined model period
(e.g., November through May). BT-SPAS-X can make abundance predictions for
missing strata, but assumptions of the maximum possible abundance used to
set IgN_max to constrain the upper threshold of abundance estimates introduce
bias that is difficult to quantify. Missing strata are particularly problematic when
they occur just before or just after periods of high abundance, especially at the
beginning or end of the designated run year (e.g., early November, late May).
Missing strata will in some cases be unavoidable. Fortunately, the modeling
results provided here indicate they are not having significant impacts on the
annual abundance estimates in most cases.

Simulation modeling can be used to provide quantitative guidance on future
sampling. For example, one could simulate a weekly abundance time series over
multiple years, apply different sampling regimes (e.g., 5, 10, 15 efficiency
trials/year) to the simulated data, and then examine the effects of the sampling
regimes on the bias and precision of annual estimates.

A model predicting juvenile outmigrant abundance based on RST data at the Tisdale
and Knights Landing RST sites on the mainstem Sacramento River are described in
Chapter 8. Capture probabilities at mainstem sites were much lower and less
precise than those from tributaries, so data from tributaries and mainstem sites
could not be included in the same model. We have developed a simpler model for
the mainstem Sacramento River that independently estimates capture probability
and abundance for Tisdale and Knights Landing RST sites. Like the model described
here, all efficiency trial data from a site will used to estimate capture probability for
each week of a particular run year. However, as only two mainstem sites with
similar trapping conditions are available, we could not use a hierarchical structure
for site or flow effects as done for the tributary model. Owing to this limitation, and
the very low precision of capture probability estimates from mainstem sites seen in
the data, annual estimates of abundance for mainstem sites will likely be highly
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uncertain compared to those from tributaries. Nevertheless, this result will still
prove useful for informing future modeling and monitoring decisions to support the
spring-run JPE effort.

6.2 Comparison to the CAMPR Model

In 1997, the Comprehensive Assessment and Monitoring Program (CAMP) was
implemented. CAMP was designed to provide a unified protocol for RST data
collection and reporting (U.S. Fish and Wildlife Service 2008). The CAMP platform
consists of a Microsoft Access database, a desktop user interface to support data
entry, and statistical modules for data analysis (i.e., passage estimates). The
platform is a template that can be used and maintained locally by each tributary
monitoring program for RST data management and analysis. The Comprehensive
Assessment and Monitoring Program in R (CAMPR) refers collectively to the CAMP
platform and associated R package used to produce passage estimates and reports
(Trent and Mitchell 2020). It includes quality assurance reporting, and a series of
estimation routines to predict juvenile Chinook outmigration abundance. Here we
briefly describe how the estimation routines work so they can be compared to the
approaches used in BT-SPAS and BT-SPAS-X.

CAMPR uses information on trapping effort and B-splines to estimate daily catches
over a trapping season when the trap was not fishing for periods of greater than
two hours and less than seven days. This approach predicts catch each day of a
trapping season based on effort (for periods the trap was fished) and spline
interpolation (for periods the trap was not fished). Like BT-SPAS and BT-SPAS-X,
CAMPR adjusts catches for each stratum (day for CAMPR, weeks for SPAS models)
based on effort. This aspect of CAMPR is not problematic. However, CAMPR goes
further by interpolating the catch data for periods when the trap was not fished,
which in our view is a significant problem. Differences in catch (C) over time are
driven by a combination of changes in abundance (N) and changes in trap efficiency
(p). Mathematically, this is described by the commonly used equation C=p*N. This
equation clarifies that catch can go up or down because N goes up or down if p is
constant, or that catch can go up or down with changes in p if N is constant.
Returning to the CAMPR approach, by interpolating catch data for periods when the
trap is not fished, the model assumes capture probability is the same as adjacent
periods when it was not fished. This is not valid in cases when the trap is pulled to
high discharge, when trap efficiency will likely be lower compared to adjacent
periods when the trap could be fished. BT-SPAS and BT-SPAS-X treat missing catch
data more appropriately because they use interpolation to estimate abundance
during periods when the trap is not fished, and thus does not need to create data or
make assumptions about capture probability during these periods.

CAMPR uses two approaches to estimate trap efficiency. The first only considers
efficiency data from a single trapping season, similar to BT-SPAS. However, CAMPR
uses a very ad-hoc approach in this situation. If there are less than 10 trials in the
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season, an average efficiency value is calculated by the ratio of the sum of
recaptures to the sum of releases, and is then applied to all days of the trapping
season to estimate daily abundance (it is essentially a pooled Peterson estimate).
When there are ten or more trials in a season, CAMPR uses a B-spline fit to daily
efficiency estimates to calculated efficiency for each day of the run. The spline
parameters are fit based on the same data likelihood (r~dbin(p,R)) used in BT-
SPAS and BT-SPAS-X. However, by doing the spline interpolation, CAMPR assumes
a lack of independence of efficiency values over time, while BT-SPAS and -X models
assume they are independent over time, but can change with covariates. CAMPR
also implements the B-spline estimation for capture probability by using a stepwise
AIC approach to determine how many knots to use for the spline. In contrast, the
approach to fitting the spline method for estimating abundance (not efficiency) in
BT-SPAS and BT-SPAS-X models is much more elegant and robust because it
adjusts the spline tension (Bayesian penalized spline) based on the amount of
information in the model about variation in abundance (not catch) over time.
Following standard statistical procedures advised for Bayesian penalized splines, the
spline stiffness, rather than the number of knots, is adjusted.

CAMPR also includes an enhanced efficiency model, where multiple years of RST
data from a site are combined, and covariates are used to predict trap efficiency.
This aspect of the CAMPR approach is similar to BT-SPAS-X (that is, it considers
data from multiple years), but the CAMPR approach does not consider the efficiency
data in a hierarchal way like BT-SPAS and BT-SPAS-X. For example, if an
information-rich efficiency trial results in an efficiency value considerably higher
than adjacent estimates, the CAMPR spline approach will use an interpolated value
that may be well below the data-driven value. The hierarchical model with random
effects used in BT-SPAS and BT-SPAS-X only substantively changes data-driven
efficiency estimates if they are weakly supported by the data (because few
recaptures were obtained). The hierarchical structure also properly accounts for the
greater uncertainty in strata where efficiency trials are not conducted or when
efficiency trial data for a given week contains limited information about capture
probability.

Methods used in BT-SPAS and BT-SPAS-X have significant advantages over CAMPR.
The approach used in BT-SPAS-X largely follows BT-SPAS, a published, fully vetted,
and widely applied model developed in part by an internationally-recognized mark-
recapture expert (C. Schwarz). We see no point in making a comparison of BT-
SPAS-X and CAMPR abundance estimates for sites and years when both are
available, because of the methodological problems in CAMPR described above.
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Tables

Table 1. Weeks of Sampling by Run Year and Rotary Screw Trap Site

Number of weeks of sampling by run year and rotary screw trap (RST) site between November 4 and May 27. Run year ‘t’ includes weeks from November 4 through December in calendar year
‘t-1" and January through May 27 in calendar year ‘t’. Refer to Figure 1 for locations of RST sites.

Run Year Battle Lower Battle Butte Upper Clear Lower Clear Deer Mill Yuba Eye Live Herringer Steep Sunset Gateway Lower
Creek Creek Creek Creek Creek Creek Creek River Riffle Oak Riffle Riffle Pumps Riffle Feather

1996 - - 31 - - 31 31 - - - - - - - -
1997 - - - - - - - - - - - - - - -
1998 - - - - - - - - 31 31 - - - - -
1999 31 31 31 - 31 - - - 31 31 - - - - -
2000 31 31 31 - 31 31 31 - 31 31 - - - - -
2001 - - 31 - 31 31 31 31 31 31 - - - - -
2002 31 31 31 - 31 31 31 31 31 - 20 - - - -
2003 - 31 31 - 31 31 31 - 31 - 31 - - - -
2004 31 31 31 31 31 - - 31 31 - 31 - - - -
2005 31 31 - 31 31 31 31 31 31 - 31 - - - -
2006 31 - - 31 31 - 31 31 31 - 31 - - - -
2007 - - 31 31 31 31 31 31 - - - 31 - - -
2008 31 - 31 31 31 - 31 31 - - 31 31 - - -
2009 31 - - - 31 31 - 31 - - - 31 - - -
2010 31 - - 31 31 31 31 - - - - 31 31 - -
2011 31 - - 31 31 - - - - - - 31 31 - -
2012 31 - - 31 31 - - - - - 31 31 - - -
2013 31 - 31 31 31 - - - - - 31 - - 31 -
2014 31 - 31 31 31 - - - - - 31 - - 31 -
2015 - - 31 31 31 - - - - - 31 - - - -
2016 31 - 31 31 31 - - - - - - - - - -
2017 31 - - 31 31 - - - - - - - - - -
2018 31 - 31 31 31 - - - 31 - 31 - - - -
2019 31 - - 31 31 - - - 31 - 31 - - - -
2020 31 - 31 31 31 - - - 31 - 31 - - - -
2021 31 - 31 31 31 - - - - - - - - - -
2022 31 - 31 31 31 - 31 - 31 - 31 - - - 22
2023 31 - 31 - 31 31 31 31 31 - 31 - - - -
2024 31 - 31 - 31 31 31 31 31 - 31 - - - -
Total Years 22 6 19 18 26 11 13 10 15 4 16 6 2 2 1
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Table 2. Efficiency Trials by Run Year and Rotary Screw Trap Site
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Number of efficiency trials by run year and RST site. Run Year r ‘t’ includes weeks from October through December in calendar year ‘t-1’ and January through June in calendar year ‘t.’

Run
Year

Battle
Creek

Lower Battle
Creek

Butte
Creek

Upper Clear
Creek

Lower Clear
Creek

Deer
Creek

Mill
Creek

Yuba
River

Eye
Riffle

Live
Oak

Herringer
Riffle

Steep
Riffle

Sunset
Pumps

Gateway
Riffle

Lower
Feather

1996

1997

1998

1999

2000

2001

OO | N

2002

O |0 |0 |Ww

2003

10

2004

12

15

12

14

2005

19

19

19

15

2006

15

14

11

2007

18

17

16

2008

16

16

16

20

2009

14

19

13

2010

19

2011

13

14

2012

10

14

18

15

2013

14

18

16

2014

N

11

11

2015

APlO|IN]|O|PA]|P+

12

2016

N

1

14

2017

2018

13

13

2019

10

2020

17

18

2021

N wlwlu|dbdh|w

AWl |W|HN

O |DA|IN|O

2022

12

2023

N

16

2024

N IN| W

O W

18

11

10

Total

131

19

138

204

O |lWw|o

13

34

150

17

190

97

21

27
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Table 3. Trap Efficiency by Rotary Screw Trap Site

Statistics on capture probability (trap efficiency) by RST site. The last column shows
the percentage of the total number of trials (mark-recapture experiments) where

the coefficient of variation (CV) of capture probability was less than or equal to 0.25
(i.e., relatively precise estimates).

Site Efficiency Trials Mean Proportion of Trials
Efficiency with CV< 0.25

Battle Creek 131 0.05 0.76
Butte Creek 19 0.27 0.84
upper Clear Creek 138 0.09 0.86
lower Clear Creek 204 0.05 0.65
Deer Creek 9 0.02 0.00
Mill Creek 13 0.06 0.54
Yuba River 34 0.01 0.21
Eye Riffle 150 0.03 0.69
Live Oak 17 0.02 0.29
Herringer Riffle 190 0.02 0.58
Steep Riffle 97 0.16 0.94
Sunset Pumps 21 0.02 0.57
Gateway Riffle 27 0.02 0.67
Lower Feather 6 0.01 0.33
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Table 4. Coefficient of Variation in Annual Estimates of Juvenile Outmigrant
Abundance of Chinook Salmon

Statistics for the CV in annual estimates of juvenile outmigrant abundance of
Chinook salmon (all run types) by RST site. Statistics are the minimum CV across
years, the mean across years, and the maximum across years. PLAD predictions
were not currently available for three years at the Hallwood site, but will be
available soon.

Run Type | Site Years of Data | CV Minimum | CV Mean | CV Maximum
All Battle Creek 22 0.10 0.31 0.49
All upper Clear Creek 18 0.11 0.33 0.78
All lower Clear Creek 26 0.08 0.22 0.41
All Deer Creek 12 0.16 0.21 0.32
All Mill Creek 13 0.18 0.28 0.43
All Butte Creek 19 0.17 0.41 0.80
All Yuba River 10 0.03 0.09 0.19
Spring Run | Battle Creek 22 0.11 0.32 0.49
Spring Run | upper Clear Creek 18 0.11 0.33 0.78
Spring Run | lower Clear Creek 26 0.23 0.31 0.63
Spring Run | Deer Creek 12 0.18 0.24 0.33
Spring Run | Mill Creek 13 0.25 0.35 0.50
Spring Run | Butte Creek 19 0.17 0.41 0.80
Spring Run | Yuba River 7 0.14 0.17 0.21
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Figures

Figure 1. Map of Rotary Screw Trap Sites

Map of the Sacramento River and tributaries showing the location of RST sites
considered for use in the spring-run juvenile production estimate (JPE) modeling.
Note: all references to the Butte Creek RST in this document are for the Parrot-

Phelan Dam site.
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Figure 2. Capture Probability For Juvenile Chinook Salmon

Capture probability (trap efficiency) for juvenile Chinook salmon from Central Valley
RST sites. Red lines are contours showing how the precision of capture probability
estimates varies as a function of the number of marks released and the capture
probability. Contour values represent the CV of capture probability estimates. The
numbers in the title of each plot show total number of mark-recapture experiments
conducted. The horizontal black line is the simple average of all capture probability

values.

0.14
0.12
0.10

0.08

0.30

0.25

0.20

0.15

Capture Probability (recaptures/releases)

0.10

0.05

0.00

— »
Y
| * *
* *
— .
G"‘ .
— + hd
! .‘f%
. *
L
1% * *s
* . s
4. (X1
o o

upper

3000 =

0.5

0.4

0.3

0.2

0.1

0.0

0.20

0.15

0.10

0.05

0.00

500
1000

Number of Marks Released

December 2025

butte crniek -18

lower

DRAFT | Peer Review Purposes Only | Not for Citation

Figures-2



DRAFT | Peer Review Purposes Only | Not for Citation

Figure 2. Continued
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Figure 2. Continued
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Figure 2. Continued
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Figure 3. Directed Acyclic Graph Describing Relationship Among Estimated Parameters

Directed acyclic graph (DAG) describing the relationship among estimated parameters (stochastic nodes denoted by
Greek letters within ovals) and data (Roman bolded letters in squares). Vertical position in the DAG denotes the
parent-child relationship among nodes. The red triangle denotes that capture probability estimates influence
abundance estimates but the converse does not occur. For simplicity, subscripts for site, year, and week are not

shown.
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Capture Probability Model

Hs mean of hyper-distribution for site effect
o5 standard deviation of hyper-distribution for site effect
Hq mean of hyper-distribution for flow effect
Cq standard deviation of hyper-distribution for flow effect
Gp standard deviation of zero-centered normal distribution for unexplained error
B_S site effect on capture probability for each site
B_Q flow effect on capture probability for each site
P Capture probability (trap efficiency)
3 unexplained error in capture probability
r observed recaptures
R observed releases
Q observed weekly average flow
Abundance Model
oy standard deviation controlling flexibilti of spline weekly abundance curve
Y spline coefficient for each spline knot k with basis function B
¢ parameter controlling effect of flow on predicted weekly abundance
Gue standard deviation controlling extent of non-spline variation in weekly abundance
v weekly deviate added to spline-predicted weekly abundance
U predicted weekly abundance
u observed weekly catch
Q observed weekly average flow
B Basis function of each spline node
Hp mean of weekly capture probability
Cp standard deviation of weekly capture probabilty
T weekly capture probability
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Figure 4. Mean and Intervals from Average Capture Probabilities

The mean and 95% credible intervals from the posterior estimates of RST site-
specific average capture probabilities (8_Ss of Equation 11, black points and
horizontal error bars). The black curved line shows the mean estimate of the hyper-
distribution for g_Ss (Equation 12a). Open blue points are the average of the ratios
of recaptures to releases.

Figure 4a. All sites contribute to hyper-distribution parameters and use the
hyper-distribution for site-specific priors
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Figure 4b. Butte Creek and Steep Riffle sites excluded from estimation of
hyper-distribution parameters and uninformative uniform site-specific priors
are used for these sites
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Figure 5. Means 95% Credible Intervals Between Standardized Discharge and

Capture Probability

Means (lines) and 95% credible intervals (shaded areas) of RST site-specific
relationships between standardized discharge and capture probability. Points are
the trial-specific capture probabilities computed based on the ratio of recaptures to
releases. Note the y-axis value at the intersection of the vertical lines (mean
discharge) and the predicted capture probability line represents the means of the

transformed g_S estimates shown in Figure 4.

Figure 5a. All sites contribute to hyper-distribution parameters and use the
hyper-distribution for site-specific priors
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Figure 5b. Butte Creek and Steep Riffle sites excluded from estimation of
hyper-distribution and uninformative uniform site-specific priors are used for

these sites
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Figure 6. Relationship Between Average Fork Length and Capture Probability

The relationship between the average fork length for marked fish that were
released and capture probability.
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Figure 7. Effect of Discharge and Capture Probability

Effect of discharge and the origin of marked fish that are released on capture
probability in Battle Creek. Lines and shaded areas show the mean estimates and
95% credible intervals, respectively.
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Figure 8. Predicted Abundance of Juvenile Outmigrant Chinook Salmon and
Capture Probability By Weekly Strata

Predicted abundance of juvenile outmigrant Chinook salmon (all run types and fry
and smolt life stages combined, top panel) and capture probability (bottom panel)
by weekly strata for select RSTs sites and run years. The height of the bars and
black error bars show the medians and 95% credible intervals predicted by BT-
SPAS-X. Bars in the top panels with dots above them and no open circles or
numbers above them identify strata with no sampling data; bars in the bottom
panel identify strata with no mark-recapture data. Numbers at the top of each plot
show the unmarked catch (u, top panel), and the number of recaptures (r) and
releases (R, bottom panel). Open circles show the Peterson estimates of abundance
(U=u/p, error bars show 95% confidence intervals)) and capture probability
(p=r/R). The line with points shows the average weekly discharge. The title shows
the median total abundance estimate for the run year with 95% credible intervals in
parentheses. The CV of the annual abundance estimate is also shown.
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Figure 8, Continued
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Figure 8, Continued
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Lower Clear Creek_2008 Ntot=5508 (4636 - 6816) cv=10%

Figure 8, Continued
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Figure 8, Continued
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Figure 8, Continued
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Figure 9. Time Series of Annual Juvenile Outmigrant Abundance Estimates
Chinook Salmon (All Run Types)

Time series of annual (run year) juvenile outmigrant abundance estimates Chinook
salmon (all run types) at six RST sites. The bar height and error bars represent the
means and 95% credible intervals, respectively. The horizontal dashed line
represents the mean across years.
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Figure 9, Continued
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Figure 10. Weekly Abundance for Outmigrating Juvenile Chinook Salmon,
Proportion of Spring-run from PLAD Model, and Resulting Abundance of Spring-
run Outmigrants

Predicted weekly abundance for outmigrating juvenile Chinook salmon (all run
types, top panel), the proportion of spring-run from the PLAD model (middle
panel), and resulting abundance of spring-run outmigrant abundance (bottom
panel) for Site LCC run year 2018. The bar height and error bars represent median
values and 95% credible intervals, respectively. The titles for the top and bottom
panels show the median, 95% credible interval (in parentheses), and the CV of the
annual outmigrant abundance estimates.
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Figure 11. Time Series of Annual Juvenile Outmigrant Abundance Estimates for
Spring-run Chinook Salmon

Time series of annual (run year) juvenile outmigrant abundance estimates for
spring-run at six RST sites. The bar height and error bars represent the means and
95% credible intervals, respectively. The horizontal dashed line represents the
mean across years.
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Figure 11. Continued
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Figure 12. Comparison of Annual Spring-run Chinook Salmon Juvenile
Outmigrant Estimates at the Upper Clear Creek and Lower Clear Creek Traps

Comparison of annual spring-run juvenile outmigrant estimates at Site UCC and
LCC RSTs. Labels beside each point denote the run year. Dashed horizontal and
vertical lines show the multi-year average abundance for Sites UCC and LCC,
respectively.

upper clear creek abundance ('000s)

800

=]
=]
=)

400

200

14
i 8 L ]
____________ ,@3'0404
i o5
o1319 017 .'623055 o12 J13 @16
| | : | | |
0 1000 2000 3000 4000

lower clear creek spring run abundance ('000s)

DRAFT | Peer Review Purposes Only | Not for Citation

December 2025 Figures-24



DRAFT | Peer Review Purposes Only | Not for Citation

Appendices

DRAFT | Peer Review Purposes Only | Not for Citation



DRAFT | Peer Review Purposes Only | Not for Citation

A. Predictions of Weekly Capture Probabilities,
Chinook Salmon Abundances (All Runs)

Plots of weekly abundance of juvenile Chinook salmon outmigrants (all run types
combined) and capture probability for all site-years (trib_all.pdf)
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B. Predictions of Weekly Probabilistic Length-at-
Date Predictions and Spring-run Abundances

Plots of weekly abundance of juvenile Chinook salmon outmigrants (all run types
combined), PLAD predictions of the proportion of spring-run salmon, and resulting
predictions of spring-run outmigrant abundance (trib_sr.pdf)
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