

Photo credit: John Hannon, Reclamation

Data Development

Mechele Pacheco, Hydrologic Engineer Reclamation, Bay Delta Office

Data Development Documentation

- Document Link:
 - Data Development
- Technical Memorandum Status:
 - Final Draft
 - Enhancements since Mid-Term Peer Review:
 - Minor modifications based on MTC feedback
 - Minor modifications based on Panel Comments

Data Development Philosophy

- Collaborative data gathering process
- Model application needs
 - Data Frequency: Capture project operations and maximum water temperatures
 - Data Precision: Operate a facility to downstream water temperature targets within tenths of a degree Fahrenheit on a daily average
- Quality data
 - Methods for data QA/QC, gap filling, meta data, and data integrity
 - Improve calibration and model performance
 - Identifies opportunities to enhance future monitoring

WTMP Model Data Requirements

- Geometry
- Hydrology
 - Inflow (hourly, daily)
 - Outflow/operations (hourly)
 - Storage (hourly, daily)
 - Selective withdrawal operations (daily, weekly)
- Temperature
 - Inflow (hourly, daily)
 - Outflow (hourly, daily)
 - Temperature profiles (weekly, monthly)

- Meteorology
 - Solar Radiation (hourly)
 - Cloud Cover (hourly)
 - Air Temperature (hourly)
 - Dew Point and Wet Bulb Air Temperatures (hourly)
 - Wind Speed and Direction (hourly)
 - Atmospheric Pressure (hourly)

Geometry: Sacramento/Trinity System

- Trinity Lake
 - Bathymetry/S-A-V
 - Dam infrastructure (outlets, spillway)
- Lewiston Lake
 - Bathymetry/S-A-V
 - Temperature Control Curtain
 - Dam infrastructure (outlets, spillway)
- Trinity River from Lewiston Dam to North Fork Trinity River
 - USGS hydrography data and known locations of hydrologically significant confluences
 - Tributary confluences

Geometry: Sacramento/Trinity System continued

- Clear Creek Tunnel
 - Heating estimated based on measured flow and water temperature data
- Whiskeytown Lake
 - Temperature Control Curtain
 - Judge Francis Carr Powerplant
 - Dam infrastructure (outlets, spillway)
- Spring Creek Tunnel
 - Heating estimated based on Clear Creek Tunnel annual average heating
- Clear Creek from Whiskeytown Dam to Sacramento River
 - USFWS habitat survey data

Geometry: American River System

- Folsom Lake
 - Bathymetry/S-A-V
 - Temperature Shutters
 - Dam infrastructure (outlets, spillway)
- Lake Natoma
 - Topographic transect data
 - Diversion
 - Dam infrastructure (outlets, spillway)
- American River
 - Digital terrain model

Geometry: Stanislaus River System

New Melones Lake

- Bathymetry
- Submerged Dam (Segment 88, 211 ft)
- Dam infrastructure (outlets, spillway)
- Tulloch Lake
 - Bathymetry
 - Dam infrastructure (outlets, spillway)
- Stanislaus River (including Goodwin Dam)
 - HEC-5Q model structure
 - Between New Melones Dam and Tulloch Lake, reach representing Goodwin Lake
 - EFDC-1D model structure (TetraTech)
 - Goodwin Dam to the confluence with the San Joaquin River
 - Tributary confluences

Bathymetry: Trinity Lake

Data Sources

Title	Source	Datum	Units
USGS 1 arc second n41w123 20210624 (data set/map)	USGS 2021	NAD83; NAVD88	Geographic coordinates; decimal degrees
USGS Topographic Quadrangle Map: Trinity Dam, California	USGS 1982	NAD27; NGVD29	UTM Coordinate (Zone 19): Meters
Esri World Imagery (satellite imagery)	Esri 2022	WGS84	Meters

Bathymetry: Lewiston Lake

- Data Sources
 - Reclamation provided detailed bathymetry data, in 50 m intervals
 - Developed 100 m interval cross sections (Jayasundara and Deas, 2013)

Bathymetry: Whiskeytown Lake

Data Sources

Title	Source	Datum	Units
USGS 1 arc second n41w123 20210624 (data set/map)	USGS 2021	NAD83 NAVD88	Geographic Coordinates: decimal degrees
The U.S. Geological Survey (USGS) Bathymetry, Topography and Orthomosaic imagery for Whiskeytown Lake, northern California	Logan et al. 2020	NAD83 NAVD88	UTM Coordinate (Zone 10): Meter
Historic 1956 US Department of Interior topographic maps of the Whiskeytown Reservoir Area	Alster 1956	NAD27 (Calif. State Plan, zone 0401) NGVD29	UTM Coordinate (Zone 10): Feet

Bathymetry: Folsom Lake

- Data Sources
 - Folsom Reservoir bathymetry (2005 USBR Sedimentation Survey)

Bathymetry: Lake Natoma

- Data Sources
 - Created from Topographic transect data collected by cbec, Inc.
 - 34 transects collected

Bathymetry: New Melones Lake

- Data Source
 - high-resolution multibeam bathymetric survey conducted by Tetra Tech in April 2012 (Tetra Tech 2012)

Title	Source		
Principal bathymetry	Tetra Tech		
USGS_13_n38w121_20220103	USGS 2022a		
USGS_13_n39w121_20220206	USGS 2022b		

Bathymetry: Tulloch Lake

- Data Source
 - high-resolution multibeam bathymetric survey conducted by Tetra Tech in April 2012 (Tetra Tech 2012)

Title	Source		
Principal bathymetry	Tetra Tech		
USGS_13_n38w121_20220103	USGS 2022a		
USGS_13_n39w121_20220206	USGS 2022b		

Hydrology Example: Sacramento/Trinity System Controlled Flows

- 1. Trinity Lake
 - Powerhouse, bypass, spillway
- 2. Lewiston Lake
 - Clear Creek Diversion, powerhouse, hatchery, spillway
- **3. Whiskeytown Lake**
 - Spring Creek Diversion, low level outlet, spillway

Trinity Lake Sources of Flow Data

Site Number/ Abbreviation	SHEF Code	Agency	Site Active?	Site Name	Data Types	Data Frequency	Application of Data
TRN	QG1, QG2, QG	USBR	YES	Generation Release from Trinity Dam Powerhouse Units 1 and2, and total release (QG=QG1+QG2)	Q	Hourly	Boundary Condition
TRN	QS	USBR	YES	Trinity Dam spill release	Q	Hourly	Boundary Condition
TRN	QU1, QU2, QU3, QU	USBR	YES	Outlet release from gates 1,2, and 3, and total outlet release (QU=QU1+QU2+QU3)	Q	Hourly	Boundary Condition
TRN	QT	USBR	YES	Total Dam Release (QT=QG+QS+QU)	Q	Hourly	Boundary Condition
TRN	HL	USBR	YES	RESERVOIR ELEVATION	Stage	Hourly	Boundary Condition
TRN	LS	USBR	YES	RESERVOIR STORAGE	Storage	Hourly	Boundary Condition
TRN	QI	USBR	YES	COMPUTED INFLOW	Flow	Daily	Boundary Condition

Trinity Lake Flow Data Quality

- Data quality assessment
 - Identify gaps
 - Identify invalid zeros
 - Check that data were consistent
- Invalid zeros were removed and became gaps in the data
- Gaps were filled by balancing reported values where appropriate
- Other gaps were filled using standard gap-filling protocols
 - e.g. linear interpolation or last best value for small gaps

Water Temperature Example: American River System Water Temperature Gages

- Water temperature gages
 - Watt Avenue: Typical Compliance Location

Folsom Lake Inflows

- North Fork American River Inflows
 - USGS gaging station on the North Fork American River at Auburn Dam Site near Auburn, CA (USGS 11433790/ CDEC NFA)
- South Fork American River Inflows
 - USGS gaging station on the South Fork American River near Pilot Hill, CA (USGS 11446030)
- Newcastle Powerhouse/Mormon Ravine Inflows
 - Estimated based on the 2006-2012 monthly averaged water temperatures measured at two PCWA water temperature stations (14-A and 3-A).

Folsom Lake In-Lake Temperature Profiles

- Folsom Lake In-Lake Vertical Temperature Profiles
 - 185 in-reservoir temperature profiles were collected between January 1st, 2001, and December 31st, 2021, in roughly two- to four-week intervals

Lower American River Water Temperature Data Sources

Site Number/ Abbreviation	SHEF Code	Agency	Site Active?	Site Name	Data Types	Data Frequency	Application of Data
11446220	n/a	USGS	YES	American River below Folsom Dam near Folsom CA	Tw	Hourly	Boundary Condition
11446700	n/a	USGS	YES	American River at William B Pond Park at Carmichael, CA	Tw	Hourly	Calibration
11446980	n/a	USGS	YES	American River below Watt Avenue Bridge near Carmichael, CA	Τw	Hourly	Calibration

Meteorology Example: Stanislaus River System Meteorologic Stations

- Green Springs Met Station data was used for air temperature, dew point temperature, wind speed and direction, relative humidity, and solar radiation.
- Gaps in the data were filled by nearby stations
 - Oakdale
 - Telegraph Hill (TLH)
 - Esperanza (ESP)
 - Mount Elizabeth (MTE)
 - Modesto

Data Development Summary

• Accomplishment:

- Developing and applying the models for the WTMP requires acquiring and organizing a considerable amount of information and data to support modeling goals.
- Flexible structure: As improved data becomes available (e.g., river bathymetry, improved boundary conditions flows and temperatures) models can be updated.
- Assessment:
 - Geometric Data:
 - Well defined for reservoirs
 - Largely sufficient for stream reaches
 - Hydrology, Water Temperature, and Meteorology Data:
 - 331 data sets are used for the Sacramento, Trinity, American, and Stanislaus River basin models. Of those data sets, 29 have gaps of sufficient duration that required additional efforts to fill.

