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Executive Summary 

The use of models is commonplace and is becoming increasingly important for assessing 
most societally important environmental problems. This document provides 
recommendations for best practices that are expected to enhance the utility of modeling 
efforts to decision-makers, stakeholders and to the modeling community in general. The 
guidance offered in this document applies equally to individual discipline-specific models 
and integrated models that combine knowledge from different disciplines.  Many of 
these concepts are general and can also be considered by non-modelers who need to 
understand the scope of a modeling exercise at its inception and to make a judgement as 
to the utility of the results upon its completion.  This document is focused on applications 
in San Francisco Bay, the Central Valley and Sacramento-San Joaquin Delta that pertain to 
areas of interest of the Delta Stewardship Council (in this report we often refer to these 
regions in shorthand form as the “Delta”); however, the recommendations for best 
practice are applicable outside of this geographic domain.  

This work provides a summary of actions that need to be undertaken to improve the 
robustness of virtually all modeling exercises, including efforts that are relatively modest 
in scope.  These actions include: defining modeling purpose; developing conceptual 
models to provide a compact and transparent representation of key processes to 
communicate with stakeholders and other technical specialists and to aid in model 
selection or development; preparing standardized datasets that can be used to replicate 
a modeling study and compare across models; verifying code to ensure that the 
theoretical framework has been correctly implemented; documenting the model 
calibration process; and evaluating model performance over new data sets. This work 
also recommends a broader exploration of model structure and bias, going beyond 
routine calibration and evaluation/validation exercises, especially when observed data do 
not adequately match model predictions.  Finally, this work recommends that adequate 
documentation be developed and made readily available to meet the needs of users as 
well as current and future modelers. 
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Additional practices can be adopted to improve modeling, but imposing requirements for 
such actions may not be practical for all studies.  Additional actions for major modeling 
studies (i.e. those studies tied to large societally consequential decisions) are identified 
separately.  These additional actions include: peer review of model studies at various 
stages of implementation; model sensitivity analysis to identify key drivers; model 
uncertainty analysis; consideration of novel approaches to meet sensitivity and 
uncertainty analysis needs of complex models and model frameworks; consideration of 
alternative models for model studies (where available); post-audits (i.e., review and 
evaluation of historical model predictions in light of new field observations); and 
development and compatibility with exchange standards to enable data sharing across 
models. 

The technical strength of a model can be established through the above steps.  
Nonetheless, there remain several non-technical issues that should be addressed to meet 
the broader goals of a modeling exercise.  These non-technical issues include: 
development of a communication strategy for a modeling study; consideration of bias in 
many aspects of the model formulation; presentation of results across many audiences; 
building trust across the community that will be using the model results; overall user-
friendliness of the modeling framework; and practices for sustaining the usefulness of a 
model over a long-term horizon. 

To encourage adoption of the best practices identified in this work, we provide three 
summary sheets, corresponding to different stages of modeling.  The purpose of the first 
sheet, designed as a checklist to be employed at inception of a modeling effort, is to 
enable various participants to agree on the basic features of the work to be done. The 
purpose of the second sheet is to evaluate and score a modeling exercise upon 
completion.  The final sheet is to assess the overall life cycle of a modeling framework. 
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Glossary 

Term Definition 

All-at-a-time (AAT) A sensitivity analysis approach where all parameters can be varied at each iteration.  
Typically used with global sensitivity analysis. 

Boundary 
condition 

A condition that is required to be satisfied at all or part of the boundary of a region in 
which a set of differential equations is to be solved. 

Calibration The process of changing values of model parameters in a quantitative model to match or 
“fit” the model to field observations.  

Code Representation of the theoretical formulation of a model in computer language that 
serves as the basis for developing an executable model.  In many cases, even for public-
domain models, the underlying codes are not in the public domain. 

Code verification The process of testing the accuracy of the model’s computer representation of the 
theoretical formulation.  This process includes code examination, testing bounding cases, 
and comparison against analytical solutions of underlying equations (when available). 

Conceptual model A high-level representation of inputs, interacting processes and drivers, and outputs for 
any kind of process (e.g., physical, biological, economic, etc.).  Although a conceptual 
model may include quantitative information, it is often presented in non-quantitative 
form and serves to communicate the model structure in a transparent manner.  A 
conceptual model may be developed as a communication tool following the completion 
of a modeling study, or, during the initiation of the project, the conceptual model serves 
as the basis for selection of or development of a quantitative model. 

Domain In this work, a specialized field of study. 

Empirical/statistical 
model 

A mathematical formulation of inputs and outputs with limited process representation; 
model parameters calibrated with observed data. 
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Term Definition 

Emulator  Computationally simplified model representations that use relationships between inputs 
and outputs. Emulators are typically developed to reduce the computational cost of 
model exploration.  

Evaluation A general term for a sequence of steps taken to understand the performance of a model 
following calibration.  Evaluation may include comparison against independent input and 
output data sets, sensitivity analysis for key parameters, or uncertainty analysis. 

Global Sensitivity 
Analysis (GSA) 

A sensitivity analysis approach that analyzes the variability of model responses across the 
full parameter space.  

Initial condition The solution of a differential equation over time requires the definition of values at the 
inception of the solution, termed the initial conditions.  Other types of formulations, such 
as time series models, may also need the definition of initial conditions. 

Local Sensitivity 
Analysis (LSA) 

A sensitivity analysis approach that analyzes model responses around a well-defined 
region of interest in the input parameter space.  

Lumped model A model that aggregates variable information over time and space for simplification, or 
because of limited data availability.  In contrast, a distributed model may have greater 
spatial and temporal resolution. 

Metadata A set of data that describes and gives information about other data. 

Model 
configuration 

The process of specifying background characteristics for a model simulation, e.g. the 
physical representation of a water body.  Model configuration is performed once the 
theoretical framework of a model has been developed and implemented. 

Model framework A general term for the theoretical implementation of a process-oriented model.  A model 
framework will usually need to be configured for application to a specific geographic 
setting.  Many models in common use are general purpose frameworks that can be 
configured to represent the same set of processes in different regions (for example, 
watershed models), whereas others are developed from the ground up as applicable to a 
single location, and the configuration is embedded within the general setup. 

Model lifecycle A term referring to the entire timeframe from conceptualization of a mathematical model 
to implementation in computer code, and to multiple cycles of application, revision, and 
reuse in one or many different domains.  Major models generally require large 
investments and a lifecycle of many decades. 

Model structure The representation of model inputs, key processes and interactions, and outputs.  A 
conceptual model may graphically communicate the model structure, but even where a 
conceptual model is not published, all process-based models require an underlying model 
structure.  In the case of data-driven models, internal processes are generally not 
represented, and model structure refers to the inputs that are selected a priori to 
influence the outputs. 

Model training Similar to calibration and parameter estimation, but typically used in the context of 
machine learning.  The process of adjusting empirical model constants to match model 
outputs and field observations. In the context of machine learning, the model constants 
may have no physical meaning. 
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Term Definition 

Monte Carlo 
simulation 

A general solution approach in modeling analysis where key values (for example, 
parameter values in a model) are sampled randomly over a defined space to provide a 
range of conditions for testing. 

Numerical model Many quantitative models are represented by differential equations that cannot be 
solved exactly (i.e. analytically) because of domain or mathematical complexity.  
Numerical solutions (such as finite elements or finite differences) are commonly-used 
approaches to estimate the solutions of differential equations.  Models that employ such 
numerical solutions are particularly common in the representation of physical and 
chemical processes, and are termed numerical models. 

One-at-a-time 
(OAT) 

A sensitivity analysis approach where one parameter is changed at each iteration.  
Commonly used with local sensitivity analysis. 

Parameter 
estimation 

Similar to calibration.  The process of adjusting parameter values in a model such that the 
model output matches field observations within an acceptable error range. 

Parameters Parameters in a quantitative model represent numeric constants associated with key 
processes.  Typically, these processes represent a feature of a natural system (for 
example, reaction rates or hydraulic conductivities), and may be known within a range.  
The process of parameter estimation is to find values that enable the model to fit 
observed data within an acceptable range. 

Sensitivity analysis The process of adjusting model parameters or inputs within a realistic range to explore 
the effect on, or sensitivity of, model outputs.  Model sensitivity in a multi-parameter 
model may depend on the states of other parameters, and individual model outputs may 
be more or less sensitive to different parameters.  A common goal of sensitivity analysis is 
to identify parameter(s) that have the greatest impact on key model outputs. 

Statistical model See “Empirical/statistical model” above. 

Uncertainty 
analysis 

Model inputs or parameter values are presented in a probabilistic form (i.e., as a 
distribution of values) to a calibrated model, and the effects on model output evaluated.  
Given that inputs and model parameters are known with different degrees of error, the 
goal of uncertainty analysis is to quantify the range of outputs in a modeling study. 

Validation A term in common use in many modeling communities, validation refers to the process of 
applying a calibrated model to an independent set of observed data to assess whether 
the model fit is acceptable.  A criticism of the term validation is that the process does not 
prove that a model is valid, but rather demonstrates performance over a limited range of 
conditions.  The term evaluation is sometimes recommended as an alternative.   
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1 Introduction 

Models are commonly used for assessing most societally important environmental 
problems.  Models are best thought of as tools for integrating data, exploring processes 
in a structured manner, and evaluating responses under historical conditions or projected 
future scenarios.  Although full understanding of a system is rarely encapsulated in a 
model, these activities cannot be performed as efficiently without models; hence, their 
extensive use in many modeling fields or domains, including the environmental domain. 

In this work, the term “environmental model” refers to analysis tools (typically 
quantitative) that are used to represent the behavior of physical, chemical, biological, 
economic, and social systems.  These various system domains often interact; thus, an 
individual environmental model may encompass more than just one system.  Although 
economic and social systems have varied modeling frameworks, for these domains our 
focus is on models where the natural environment is a driver.  In the Delta, the use of 
environmental models is widespread in the representation of physical, chemical, and 
biological systems, and the use of these models continues to grow, especially in the 
domains of economic and social systems. 

Models in general, and environmental models in particular, must strike a balance 
between the competing needs of accessibility and comprehensiveness (Figure 1). A 
model formulation that is more readily understandable or accessible may focus on key 
processes and provide a more simplified system representation while omitting more 
complex relevant drivers. A more comprehensive model formulation may represent many 
drivers and capture system complexity at the expense of greater challenges to 
implement, test, and explain. 

Model developers have flexibility in how they choose to represent a system but are 
usually limited by one or more of the following constraints: availability of observed data, 
availability of time and human resources, and computational resource requirements. 
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Model development is a creative process that seeks to find the “right” or “best” course of 
action given the above constraints. However, given that an a priori “right” system 
representation rarely (if ever) exists, there is considerable subjectivity in the selection of 
modeling approach.  For these reasons, there is no obvious way to know if the modeled 
representation of a problem is correct and credible, and additional testing must be 
performed to assess these features. 

This document provides recommendations for best practices that are expected to 
enhance the utility of modeling efforts to decision-makers, stakeholders, and the 
modeling community in general. To provide context for the best practices, this chapter 
first characterizes modeling processes being applied in the Delta.  This work is part of a 
larger study evaluating the current state and future opportunities for integrated 
modeling in the Delta (See Memo 2, A Survey of Recent Integrated Modeling Applications 
in the Delta and Central Valley and Memo 3, Institutional & Technological Challenges and 
Solutions for Model Integration and Data).  The guidance proposed in this document 
applies equally well to individual discipline-specific models as well as integrated models 
that combine knowledge from different disciplines. 

Figure 1. Balance between accessible and comprehensive models. 

1.1 Typical Uses of Models in the Delta 

Commonly-used models in the Delta, as summarized in the Model Inventory (Memo 1), 
support a range of activities that can be broadly classified as follows: 

• Planning and decision support - including but not necessarily limited to support for 
the development of new environmental regulations (e.g. changes to water quality 
standards), support for long-term facility or operational modifications (e.g. changes 
to reservoir operating rules), or support for the creation of new infrastructure (e.g. 
new alternatives for Delta conveyance or evaluation of new dam sites). 

• Science support - including the generation and testing of hypotheses to better 
understand the Delta ecosystem.  Activities include, for example, understanding the 
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population behavior of key species; understanding food web interactions; or 
understanding changes in landscape over the long-term due to human pressures, 
climatic change, and extreme events. 

• Real-time operations support - including reservoir outflows for flood management 
and water supply, water exports from the Delta, and barrier operations used to 
manage salinity at various locations. 

• Dispute settlement support - including legal proceedings in the context of water 
rights adjudication or allocation of water among different types of uses. 

Given the growing pressures on water resources in California and the greater awareness 
of environmental protection, these activities will continue to need the support of credible 
modeling well into the foreseeable future. 

1.2 Individual and Institutional Roles in Modeling 

With the exception of science-based modeling, a variety of participants are involved in 
directing, executing, and evaluating the outcomes of a modeling study as shown in Figure 
2.  These participants may belong to different institutions or organizations with different 
areas of interest and expertise.  Appreciating the intricacies of this typical structure is a 
prerequisite to understanding how modeling best practices can effectively serve these 
varied participants.  Thus, a model study will have a sponsor, which is an institution or 
group of institutions that have an interest in the outcome and provide the resources for 
its performance.  The sponsor will likely broadly define the scope of the model study, 
including question(s) to explore, scenarios of interest, schedule, funding, etc.  The actual 
development, testing, and reporting of a model study will likely be performed by model 
specialists with knowledge of the specific domain and with relevant software 
development skills.  In many cases, the sponsor and other decision makers will not work 
directly with model specialists or model results. Rather, one or more domain experts
may help with interpreting and communicating model results to the sponsor.  Finally, 
stakeholders with an interest in the outcome of a study may influence the process 
through the model sponsor or the decision makers.  In some instances, stakeholders may 
directly interact with model specialists. Indeed, with the growing application of models in 
many areas of decision-making, it is desirable to engage and enable stakeholders to play 
a larger role in modeling studies, in the Delta and globally (Voinov and Bousquet, 2010; 
Voinov et al., 2016). 

Models that are focused on scientific advancement and led by research teams (the 
manner in which most scientific research is conducted in the U.S.) may have a simpler 
structure than shown in Figure 2. Although such models may not be directly used in 
policy-making in their early phases, they serve two roles: (i) the models may mature over 
time and drive larger scale policy decisions, as described in the next section, or (ii) the 
new understanding and related individual expertise gradually diffuses into the broader 
modeling community. 
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Figure 2. Key roles in modeling studies. 

1.3 Model Types 

Several different mathematical approaches may be applied in the development of 
quantitative environmental models as shown in Table 1.  The broad classes of 
mathematical approaches in use include analytical/numerical solution of process 
equations over a defined domain; statistical/empirical models that are based on 
relationships between observed data but typically contain little to no process 
representation; optimization based models that seek to meet key objectives subject to a 
set of defined constraints; machine learning based models, a sub-class of 
statistical/empirical models with a wider range of algorithms and capacity to handle 
disparate data sets; and agent-based models that represent behavior of organisms or 
populations (animal or human) in response to external factors.  Several of these 
approaches may be combined within a single modeling system, resulting in a “hybrid” 
model.  As described in the following chapters, the underlying approach adopted within a 
particular modeling framework affects the applicable best practices for development.  

Table 1. Types of Models used for Environmental Modeling 

Model type Feature 

Analytical/Numerical Solving a framework of process equations, either in closed analytical form or numerically; 
model parameters calibrated with observed data. 

Statistical/Empirical Limited process representation; model parameters calibrated with observed data. 

Optimization based Focused on meeting key objectives under a range of input conditions. 

Machine-learning based Trained on finding patterns or relationships in available data, but with minimal process-
oriented representation.  These are an extension of the statistical/empirical models, but 
with a greater variety of emerging algorithms to represent increasingly complex data sets. 

Agent-based Represents behavior of organisms or populations (animal or human) in response to 
external factors over time and space. 
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1.4 Model Elements 

For most of the model types described above, the system is composed of the elements 
shown in Figure 3.  The model is driven by initial and boundary conditions of the variables 
of interest, where the initial conditions represent the values at the beginning of the 
model run and the boundary conditions represent values at the edge of the domain to be 
modeled.  Specification of initial and boundary values influence the time evolution and 
spatial scale of model calculations.  The model configuration is used to define the 
background setting over which the calculation is being performed, such as the 
bathymetry of a water body or the depth of an aquifer.  Within the model, there are 
usually some pre-defined or adjustable parameters.  Pre-defined parameters refer to 
values that are independently measured or known, such as the properties of water 
density as a function of temperature.  Adjustable parameters are typically those that 
cannot be measured directly and are derived by fitting the model to observed data (a 
process called calibration which is described in the following chapter).  The model may 
calculate values (over time or space) based on the equations, configuration, and 
boundary conditions, termed the internal state variables.  A subset of or an interpreted 
summary of the state variables may be presented as outputs; outputs may be presented 
in tabular form or in various graphical forms.  Best practices for modeling are related to 
each of these elements. 

Figure 3. Major elements in model systems. 

1.5 Model Process 

The steps necessary to model a specific problem depend on the nature and history of the 
problem being studied.  When basic principles of the problem are well understood and 
mature, a model study will likely utilize an existing model framework, customized for a 
specific location of interest.  When basic science associated with the problem is still 
developing, modeling will likely focus on the creation of new models, new model 
components, and/or the development of new codes.  Both types of problems are 
evaluated through model studies in the Delta and are described further below. 

Figure 4 diagrams the sequence of steps that might occur for a problem with well-
defined basic theoretical principles, mathematical representations, and computer 
implementations in place.  The main steps, explained in greater detail in the following 



1. Introduction 

6 Memo 4. Recommendations for Modeling Best Practices

chapters, involve using observed data from the field to configure and calibrate the 
model; apply to various scenarios; and report results.  Model results are compared 
against field data and can be subjected to a variety of tests to evaluate performance.  To 
provide additional specificity for these modeling best practices, we separate the 
evaluation step into two phases: an initial evaluation that is expected to be applied for all 
model applications and additional evaluation such as sensitivity and uncertainty analysis.  
The latter phase requires more resources and time that are better suited for larger and 
more consequential exercises.  Many applications fall into the category of applications 
shown in Figure 4, where a modeling framework (such as MODFLOW or C2VSIM, for 
groundwater flow modeling1) is customized for a specific geography.  Although the basic 
theory for this class of models is well-established, there are nonetheless many areas that 
are the focus of improved performance and research.  These include collection of more 
spatially and temporally resolved field data to better configure the model; improving the 
calibration of the model to better fit observations; more efficient model run times; 
improved visualization and interpretation of results; and more sophisticated evaluation 
of performance as described in the following chapters. Over time, models in this 
category, while using the same theoretical equations to represent the underlying 
processes, are becoming more spatially and temporally detailed and resulting in greater 
computational requirements. 

Figure 5 diagrams the sequence of steps that may occur for a problem where the 
underlying scientific understanding is evolving.  The primary difference between an 
evolving problem and a well-defined problem is that, at the inception of such a study, 
model structure, data needs, or even outputs are less certain.  Here the focus is on 
collecting more data (typically new types of indicators to improve scientific 
understanding) and developing conceptual models to explain relevant processes and 
drivers for a variable of interest. A conceptual model may be thought of as a compact 
graphical representation of the key processes of interest in a modeling study. Benefits of 
a conceptual model are described further in Chapter 2. A conceptual model may be 
converted to a quantitative model structure, thereby formally describing how inputs and 
outputs are related and then implemented in computer code.  Such models may then be 
calibrated and evaluated in a manner consistent with more mature models.  The 
modeling best practices proposed in this work apply to both newly-defined and well-
established modeling processes.  The distinction between Figure 4 and Figure 5 is made 
not to downplay the role of evaluating and testing practices in models with evolving 
science, but rather to point out that the primary attention may often be focused on 
improving the basic understanding and representation of the processes of interest. 

1 See Memo 1, Model Inventory, for additional details on these and related frameworks. 
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Figure 4. Modeling steps for a topic with well-developed theoretical frameworks and computer implementation. 

Figure 5. Modeling steps for a topic where the scientific understanding is still evolving. 

1.6 Model Life-Cycle 

Many models will not be applied to a single study but will have an extended life, either 
as-is or with modifications and updates, potentially over decades.  Alternatively, codes 
and formulations from one model can be re-purposed and used in a new generation of 
models.  Another perspective to think about modeling best practices, therefore, is over a 
long-term life cycle.  This is shown schematically in Figure 6.  The computer 
implementation of each model is based on a specified conceptual model and model 
structure.  As information from multiple studies applying the model is accumulated, a 
more nuanced understanding of the strengths and weaknesses of the underlying model 
structure will develop.  This may help to inform and improve the underlying conceptual 
model, and ideally, result in updates and revisions to the model for future applications.  
Over the long-term, individuals responsible for model development will likely change and, 
therefore, there is a need to adequately document the existing model and to develop an 
effective long-term plan for code maintenance and migration to modern software 
platforms.  The long-term life cycle of the model refers to the activities related to the 
management and maintenance of the model that enable its continued improvement and 
evolution over time. 
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Figure 6. The life-cycle of a typical model. 

1.7 Model Ownership 

Environmental models commonly used in the Delta may be open source, public domain, 
or proprietary.  Open source models are those where the underlying source code of the 
model is available for anyone to examine and modify, potentially creating a new 
executable version of the model.  Public-domain models are those where the executable 
version of a model is freely available, although the source code may not necessarily be 
available.  Finally, proprietary models are owned by a non-public entity and there is a cost 
for leasing and applying the model.  Memo 1 (Model Inventory) provides a description of 
specific models in use in the Delta across different study domains. 

Each approach has strengths and weaknesses as outlined below: 

• Open-source models: These models are free to use and their source codes can be 
modified by anyone.  In many cases, well maintained and documented open-source 
models may be the basis for major modeling studies, as is the case with the DSM2 
and CalSim models in the Delta.  Open source models are also suitable for new 
scientific applications, where there may be a need to add new process information 
to an existing model by making changes at the computer code level.  In most cases, 
considerable user expertise is needed to make meaningful changes to complex 
environmental models.  Where a community of modeling experts exists, open-
source models are an effective means for continued development.  In general, 
however, the ability of any user to change the model can create a concern with 
version control, in that specific outcomes may be a consequence of the particular 
variant of the model being used.  Furthermore, for open source models to be 
sustained, there is a requirement for funding of staff for development; often this is 
done through government or academic organizations. 

• Public-domain models: These are free to use, although there may be limits to what 
can be changed in a published form of the model framework.  The costs of 
development are borne by the sponsoring organization.  In some cases, sponsoring 
agencies (e.g., the U.S. Army Corps of Engineers) have provided resources to make 
their public-domain models easy to use in a manner similar to some proprietary 
models.  These models are suitable for many standardized studies with large teams 
of modelers. 
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• Proprietary models: Fees for use may be significant, and thus limit who can directly 
use the model.  Fees provide continuing resources for the developing organization 
to improve the code and the user-friendliness of the model.  Where a model has 
uses in many geographic domains, the development costs are amortized over a 
larger user base.  These models are suitable for standardized studies where 
available model features adequately represent the modeling purpose, and an off-
the-shelf product can be used. 

In the Delta, a mix of open source, public domain and proprietary models has evolved in 
response to several factors, including: the history of development in different domains, 
sponsoring agency involvement, and resources for new models.  As with other elements 
described in this chapter, the ownership of the model can in some cases influence the 
best practices actions that can be applied. 

1.8 Other Published Modeling Guidance 

As the science of modeling has matured and become more widely used, good modeling 
practices that target particular weaknesses of model development and application have 
been proposed.  Table 2 is a summary of general guidance on environmental modeling 
that was published over the past two decades and was considered as part of this work.  
Other domain-specific guidance has been developed and embedded within reviews of 
modeling studies in different disciplines, e.g., coastal and estuarine models (Ganju et al., 
2016; Dawson et al., 2019); watershed models (Daniel et al., 2011); models for total 
maximum daily load (TMDL) development for water quality constituents (Shoemaker et 
al., 1997); and modeling nutrient behavior in aquatic systems (Trowbridge et al., 2016).  
This document is informed by these published guidelines and is tailored to suit the 
specific modeling needs in the Delta today.  Elements from these prior guidelines are 
cited, as appropriate, throughout the following chapters. 

1.9 Motivation for this Work 

The goal of this work is to propose a set of best practices for the wide range of modeling 
activities in the Delta today.  Based on the literature cited in Table 2 as well as our own 
experience, the proposed practices cover both new model development as well as 
structured applications of existing model frameworks. Furthermore, the proposed 
practices range from a single study to a model life-cycle over decades.  Key benefits of 
proposing a set of best modeling practices are organized as follows: 

Credibility Benchmark: The perceived credibility and resulting acceptance (or rejection) 
of a model falls between two extremes. At one extreme, model results are accepted 
indiscriminately without regard to the underlying error or uncertainty in the models.  At 
the other extreme, model results are rejected as being “wrong” because stakeholders do 
not trust the model or because the model cannot explain all observations. Good 
modeling practices should assist model users and decision-makers in making informed 
judgments regarding model credibility. 
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Table 2. Prior General Guidance for Environmental Modeling 

Year of 
Publication Title Author Focus 

2000 Protocols for Water and 
Environmental Modeling 

California Water & 
Environmental Modeling Forum 
(formerly Bay-Delta Modeling 
Forum)  

Guidance on modeling 
protocols for the Bay-Delta 

2002 Guidance for Quality 

Assurance Project Plans for 
Modeling 

U.S. Environmental Protection 
Agency  

Recommendations on how to 
develop a Quality Assurance 
Project Plan (QAPP) for projects 
involving model development 
or application 

2006 Ten Iterative Steps In 
Development and Evaluation of 
Environmental Models 

A. J. Jakeman, R. A. Letcher, and 
J. P. Norton 

Widely cited general guidance 
on good practices 

2007 Models in Environmental 
Regulatory Decision Making 

National Academy of Sciences General guidance on best 
practices in model use in 
complex regulatory settings 

2008 Good Modeling Practice N. Crout et al.; Chapter in book 
on Environmental Modeling, 
Software, and Decision Support, 
Jakeman et al., Eds. 

General guidance on model 
development, application, and 
testing 

2009 Guidance on the Development, 
Evaluation, and Application of 
Environmental Models 

Gaber et al, 2009 (U.S.  
Environmental Protection 
Agency, Council for Regulatory 
Environmental Modeling 

General guidance on 
environmental models, 
considering both technical and 
institutional aspects 

2012 Assessing the Reliability of 
Complex Models: Mathematical 
and Statistical Foundations of 
Verification, Validation, and 
Uncertainty Quantification 

National Academy of Sciences Report with a technical focus on 
analysis approaches for 
evaluating complex scientific 
and engineering models 

Investment Protection: With the increasing complexity of environmental problems being 
addressed, model development and related analyses represent a large and growing 
investment of resources.  Unlike databases of field observations, however, model results 
have limited shelf lives unless supported by adequate documentation, source codes, 
input files, etc.  Good practices should help provide guidance on developing and 
maintaining such supporting material. 

Best Practices Adoption: Our experience tells us that many of the good practices 
described in the following chapters are often acknowledged by the modeling community 
but are not fully implemented because of institutional or resource constraints.  Our goal 
in recommending such practices is not to cause an unreasonable burden on model 
developers, but to highlight a range of realistic options that can be incorporated within 
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ongoing studies.  To encourage adoption, we provide a checklist to be used at the 
inception of a modeling effort and an evaluation form that can be used to evaluate a 
modeling study following its completion. 

Context for Non-Modelers: These best practices are intended to inform the larger 
modeling community (including model sponsors and stakeholders) so that study results 
can be reviewed in an inclusive and comprehensive manner.  Users of model results, 
many who may not be model specialists, are confronted with model outputs that may or 
may not be in an audience-appropriate format. A set of best modeling practices can 
support basic familiarity (i.e. provide context) with the modeling approaches and 
limitations, thereby enhancing a users’ experience with the model and promote an 
informed positive vision about the results they observe from the model.  Additional 
investments of resources and time are generally associated with the implementation of 
best modeling practices; this needs to be communicated adequately to model sponsors 
and others within the larger modeling community.  

1.10 How to use this Memorandum 

This document provides guidance that can be used by modelers to support execution of a 
model study.  Many of these concepts are general and can also be considered by non-
modelers who need to understand the scope of a modeling exercise at its inception and 
make a judgement as to the utility of the results upon its completion. 

We describe best practice elements under three general themes and devote a chapter to 
each theme.  The first theme, described in Chapter 2, focuses on specific actions to 
improve the robustness of modeling. These actions apply to virtually all modeling efforts, 
even where resources are modest and time schedules are limiting.  The second theme, 
described in Chapter 3, focuses on additional steps that are appropriate for large 
modeling studies with consequential societal impacts, such as planning for major 
infrastructure or new water quality regulations.  In most cases, these steps will require 
additional resources to perform adequately, and will need to be a topic of discussion 
between model developers and model users.  The third theme, described in Chapter 4, 
focuses on broader activities associated with modeling that enable better communication 
and adoption of results. These activities are related less to the technical elements of 
modeling per se, but to the social elements that ultimately drive a model’s utility.  These 
activities should be undertaken over all phases of a model’s life, beginning with problem 
formulation and ending with specific applications and its long-term life-cycle. 

To encourage adoption of the best modeling practices described in this document, 
Chapter 5 provides three documents: i) a checklist to be used at the inception of a 
modeling study, ii) an evaluation form that can be used to assess and potentially score a 
model study at completion, and iii) an evaluation form to assess the long-term life cycle 
of a modeling framework.  Terms used in this document are defined in the Glossary. 
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2 Improve Model Robustness for 
Typical Applications 

Model studies vary greatly in time requirements and resources available for execution. 
Time requirements may range from weeks to many years, depending on the complexity 
and the importance of the underlying questions being asked.  In this chapter, we identify 
a set of practices that help to address model robustness and are applicable to virtually all 
types of modeling activities, including applications that are relatively limited in time and 
scope.  In this work, we refer to robust modeling exercises as those that are credible 
among the community of modelers and users and stand the test of time. 

2.1 Define the Purpose of a Modeling Exercise 

At the inception of a study, it is important to clearly define the specific purpose of a 
modeling exercise.  While this practice appears obvious, it is often not explicitly 
addressed up-front among modelers and stakeholders.  A clear specification of the 
purpose is especially needed for modeling efforts that are not focused on open-ended 
research.  An important goal of this practice is to constrain acceptable outcomes.  The 
stated purpose should, at a minimum, allow stakeholders to agree on a broad scope of 
work, including: what processes will and will not be modeled, what data are needed, 
what form the results will take, and what the expected accuracy and uncertainty will be.  
Importantly, a modeler needs to understand the stakeholders’ viewpoint of how the 
model results will be used.  The model study’s purpose can be defined with greater clarity 
when the task at hand consists of customizing an existing framework, rather than 
creating a completely new model.  The more specifics are outlined early, the more 
efficiently the modeling exercise will progress.  In many situations, elements of the 
modeling scope are not well-defined up-front and are later selected by decision-makers 
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based on the results obtained, likely resulting in a less-than-optimal use of the modeling 
effort. 

A National Research Council (NRC) evaluation on modeling practices for regulatory 
application (NRC, 2007) proposed the following relevant and valuable suggestions to help 
define the model purpose.  Not all of these questions may apply to all modeling efforts, 
but a reasonable subset can be selected for most modeling studies: 

• At what temporal and spatial scales is the model to be applied? This question 
involves the grain (resolution in time and space) and the extent (spatial and 
temporal domain) at which the model is to be focused. 

• Who will the major model users be and what constraints does that imply for model 
application once developed? What is the level of expertise of the proposed users? 

• What type of input data must the model users provide? How can these data be 
obtained (from other models and measurements)? 

• What sources of data are available to support model evaluation? 

• What are the basic outputs needed and must they be constrained by a deterministic 
approach or is a probabilistic approach allowable2? What additional outputs might 
be useful to enhance model transparency (e.g., enhance ability to explain findings to 
stakeholders and users) and flexibility (e.g., capacity for the model to be modified 
and applied to situations for which it was not constructed)? 

• What level of reliability is required? 

• What evaluation criteria should be applied to determine the applicability of the 
model or of particular model components? 

• The exercise to define the model’s purpose should be formally and clearly 
documented, a common engineering practice across many other disciplines (e.g. 
civil, environmental, mechanical) in their design endeavors.  That documentation 
can then be revisited and revised as the modeling effort evolves. 

2.2 Develop Conceptual Models and Transparent Model Formulations 

Conceptual models, as used in the environmental domain, are abstractions of reality, 
ranging from a schematic representation of processes to a more detailed description of 
the state of science related to a specific environmental concern.  Where a new model is 
to be developed, creating a conceptual model, even a simple schematic representation, is 
recommended as a first step in creating the model and writing documentation. A 
conceptual model is a communication tool that guides model development, 
experimentation, and evaluation. Moreover, conceptual models may provide a good tool 
for communicating about a model with stakeholders, particularly when the conceptual 
model represents processes graphically and highlights key quantitative information. A 
good conceptual model improves understanding of the system and creates a point of 
reference for model developers to revisit when considering changes to the model. 

2 A deterministic output provides a single set of model results, potentially varying in space and time.  A probabilistic output 
provides a distribution in output values based on the input conditions and parameter values used. 
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In addition to enhancing communication, under certain circumstances, a well-designed 
conceptual model may more readily accommodate formal hypothesis-testing relative to a 
computer implementation of a conceptual model. A good conceptual model may lead to 
the early realization that development of a quantitative system model would be 
premature due to data and knowledge gaps. 

In some instances, conceptual models play a role following the synthesis of data and after 
completion of a modeling study.  Typically, the initial conceptual model would be refined 
over the course of model application, and more quantitative information provided in the 
revised conceptual model. Such a model can serve as a basis for further communication 
with stakeholders (also see Chapter 4). Graphical representation of modeled processes, 
with key quantitative information being highlighted when available, is a significant aid to 
communicating with stakeholders. 

Three examples of Delta mercury conceptual models highlight the roles played by 
different types of conceptual models at different stages of planning and model 
development. The first example, from Wiener et al. (2003), is shown in Figure 7 as a 
graphical summary of all the mercury transport, transformation, and bioaccumulation 
processes from the upper watershed to the estuary. This graphic illustrates the 
complexity of interactions in different geographical areas within the watershed and 
points to the need for monitoring, analysis, and possible modeling needs for different 
conditions.  It does not provide specific process level information that a modeler could 
use, however.  A more focused conceptual model on freshwater cycling of mercury 
(Figure 8), from Hudson et al. (1994), provides such process detail and was used in the 
formulation of a numerical model (the Mercury Cycling Model).  A third example, from 
Wood et al. (2006), provides a conceptual model with quantitative information on the 
Delta methylmercury budget (Figure 9) that was compiled using available data on 
concentrations and flows.  Extensive new work on mercury modeling in the Delta (see 
Memo 2, Chapter 12) builds upon these conceptual representations.  While the new 
modeling may result in changes to the load estimates and to the conceptual models, the 
existing conceptual models remain an important communication tool and the basis for 
collective understanding among the stakeholder community. 

Conceptual models have been developed and documented as stand-alone volumes, 
combining graphical representations and narrative syntheses of available information. 
Examples of conceptual model documentation include a model for Delta Smelt 
(Interagency Ecological Program, 2015) and a model for nutrients in the Central Valley 
and Delta (Tetra Tech, 2006).  These detailed conceptual models are applicable when a 
large amount of information exists on a problem of interest, and where available, provide 
a strong foundation for model development. 

A potential pitfall associated with conceptual models is that the model may be overly 
abstract to sufficiently guide the implementation of a quantitative system model. This 
problem is particularly relevant for large, complex processes. As a countermeasure, 
conceptual models should be re-evaluated and revised as the quantitative model is 
developed. 
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Another potential pitfall associated with conceptual models is that the model may be too 
complicated to allow prioritization of key processes, is overly difficult to understand, and 
overly difficult to communicate to the modeling team and to stakeholders.  In developing 
conceptual models, i) professional judgement is needed to identify and prioritize key 
processes and mechanisms and ii) assumptions must be clearly documented. 
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Figure 7. Conceptual model for mercury transport and biogeochemistry in Bay-Delta ecosystem.  
Source: Wiener et al. (2003). 
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Figure 8. Conceptual model for mercury cycling reactions in freshwater systems  
(Hudson et al., 1994). 

Figure 9. Methylmercury daily budget based on load analyses in the Delta methylmercury TMDL.  
Source: Wood et al. (2006). 
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2.3 Verify Code 

Code verification is the process of determining how accurately a computer program 
correctly solves the equations of a mathematical model.  It is assumed that most 
established model frameworks in common use will have undergone this test and, thus, 
this task is appropriate when a new code or module is being developed for a specific 
application.  Code verification also provides an opportunity to evaluate or reevaluate the 
efficiency of the code, which may enable its use for situations that require multiple 
model runs, such as for sensitivity analysis.  Typically, computer codes are verified with 
well-documented data sets and the results of published and documented analytical or 
semi-analytical models.  Within many large-scale computational models, opportunities 
exist to perform verification studies that reflect the hierarchy or collection of these 
models. For example, code verification can successfully employ “unit tests” that assess 
whether the fundamental software building blocks of a given code correctly execute their 
intended algorithms. Documentation of code verification, especially for newer models or 
for models where modifications are being made to established codes, is an important 
part of establishing model robustness. 

2.4 Prepare Standardized Observed Datasets for Analysis 

Observed data are a fundamental part of sound modeling practice.  In most instances, 
environmental models contain parameters that are defined independently or are 
adjusted as part of the model setup (see Chapter 1).  Parameters that cannot be 
determined independent of the model (e.g. a reaction rate for a chemical process within 
a water body or a roughness coefficient for a stream bed) are estimated through the 
process of model calibration (described below), which involves tuning the parameters to 
obtain a good fit between the model and observed data.  Thus, data that are credibly 
measured, have good quality, have been cleaned of potential erroneous values, and well 
documented for limitations are an essential part of the modeling process.  California 
Assembly Bill 1755 (Open and Transparent Water Data Act, AB 1755) is a large step 
toward such a data resource. The bill requires California state agencies to make data 
publicly available and to develop protocols for data sharing, documentation, quality 
control, and promotion of open-source platforms and decision support tools related to 
water data.  Once fully implemented, AB 1755 may provide observed data in a form that 
is suitable for model studies (i.e., for calibration and testing).  Additionally, the California 
Water Quality Monitoring Council has requirements for quality assurance program plans 
that must be used in collecting water quality data. 

Modelers generally prepare data sets for model calibration and testing, pulling from a 
variety of available data sources.  Data preparation typically involves some form of 
compilation across different sources, conversion to common units, and cleaning to 
remove known outliers, all of which can be time consuming, and more importantly, have 
a bearing on the model calibration.  Modelers may obtain different model calibration 
result depending on the quantity of data used and the specific process steps used to 
prepare model input data, even when utilizing the same model framework.  In some 
cases, models may use processed values (e.g. loads derived from pollutant 
concentrations, or salinity isohalines from point-based values) rather than directly 
observed data.  The creation of standardized input datasets — whether using directly 
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observed data or some processed form — is recommended, especially when many 
different users are expected to be involved in parallel studies. 

Standardized datasets should be thoroughly described via metadata, corroborated with 
explicit references, and prepared for analysis with a reproducible and documented 
workflow. The use of standardized datasets limits the time lost because of errors in 
model runs arising from incorrect input data. Preparation of standardized datasets 
involves decisions about missing values and specifications of data types (e.g., date, 
integer, string, etc.). One of the central challenges of preparing standardized datasets is 
anticipating the possible ways that a dataset could contain inconsistencies. For example, 
does the data provider use letter codes in place of missing data causing potential type 
mismatches? Does the test dataset include all the possible permutations of codes 
produced by a data provider? Does the data cleaning code check for the shape of the 
data for early detection of possible changes in data structure?  Ideally, these decisions 
should be documented for future users. 

Typically, such processed datasets are not easily available and may not be part of raw 
data sources.  Therefore, a related recommendation is the creation of a searchable 
repository of such standardized datasets where a user can identify appropriate 
information for use in a modeling study. 

2.5 Accommodate Appropriate Model Complexity 

In most modeling situations encountered in the Delta, more than one approach may be 
taken for model development.  Where the task requires use of an existing model, more 
than one model may be available for use.  Where the task requires the development of a 
new model, the modeler has some discretion on the level of process complexity to be 
used.  In both cases (existing or new model), the modeler has the flexibility to determine 
the level of spatial and temporal detail incorporated.  As an example, a dynamic model 
may compute and report values at timesteps of minutes, days, or longer.  A spatially 
detailed model may contain a grid with sizes ranging from square meters to hundreds of 
square kilometers.  An appropriate level of model complexity is a function of multiple 
factors including, but not limited to, objectives of the modeling exercise, knowledge of 
the system, and data availability.  A useful rule of thumb for deciding on the level of 
complexity a priori is that the model outcomes should be testable by observed data 
spatially and temporally.  For example, when choosing between a simple lumped model 
and a more sophisticated distributed model, a model developer should be able to 1) 
support the added complexity by more detailed input data available for the distributed 
model (e.g. distributed measurement of related properties), and 2) test whether this 
added complexity is providing an additional benefit by comparing the simulations with 
available observed data. 

Inability to identify a single correct model (i.e. problem of identifiability) is a clear cost of 
excessive model complexity. Complex models often have a larger number of parameters, 
and under these conditions, different combinations of parameter values can lead to 
similar model results when compared to observed data (e.g., runoff at the catchment 
outlet or water level in groundwater bores). Such a result implies that the observations 
are insufficient to properly test the model structure or parameter values.  Furthermore, 
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even if a model appears to accurately simulates a particular response, this result does not 
necessarily indicate that other model predictions are correct.  For example, although a 
rainfall-runoff model may provide good fits to streamflow at a catchment outlet, it may 
not necessarily provide accurate streamflow estimates at internal gauging stations or 
correct spatial patterns of saturation deficit. This issue has been clearly identified by 
many researchers (Grayson and Blöschl, 2001; Tasdighi et al., 2018), yet it is commonly 
ignored by model users. This issue is often referred to as “equifinality” or “non-
uniqueness” in the literature and is a subject of continuing discussion (Beven, 2001). 

Figure 10 illustrates the conceptual relationship between model complexity, data 
availability, and predictive performance. The term “data availability” refers to both the 
amount and quality of the data in terms of its use for model testing.  Within the context 
of hydrology, access to spatial patterns of surface runoff data is considered “high” 
availability while scarce streamflow measurements as aggregated runoff implies “low” 
availability. The term “model complexity” means detail of process representation and 
spatial/temporal detail. Complex models include more processes and report values at 
greater spatial and temporal density.  As illustrated in Figure 10, for a given data 
availability, there is an optimum level of model complexity giving the highest predictive 
performance; additional complexity leads to concerns with identifiability or equifinality.  
For a given model complexity, more data availability usually results in better predictive 
performance up to a point, beyond which the data does not provide more useful 
information to improve the model with that level of complexity. Under these conditions, 
a model user may wish to consider a more complex model to better exploit the 
information from the available data. 
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Figure 10. The conceptual relationship between model complexity, data availability, and performance 
(modified from concepts in Grayson and Blöschl, 2001) 

2.6 Calibration: Formal Process for Parameter Estimation in Models 

As previously discussed, environmental models often use parameters that are not known 
ahead of time but are derived on a site-specific basis from the observed data. Models use 
parameters within equations to relate various influences and responses (e.g., rainfall to 
runoff).  Some of these parameters may be readily determined based on field 
measurements or other observations. Often, however, many model parameters are 
either too difficult to measure (specifically with proper spatial resolution) or practically 
impossible to measure (non-measurable parameters).  An example of a parameter that is 
too difficult to measure with adequate spatial resolution includes the hydraulic 
conductivity in aquifers (used for groundwater modeling); or the parameter Manning’s n 
coefficient for roughness in surface water bodies (used for streamflow modeling). 
Furthermore, some domains, notably in the biological, economic, and social sciences, 
inherently use parameters that are lumped and location specific, and not known a priori. 

Depending on the level of complexity, models can be posed with a small number of 
parameters or can be posed with a very large number of parameters – in extreme cases 
numbering in the thousands.  The task of calibration—also termed training—is to find the 
set of best-fit parameters that describe the observed data with a given model.  Formally, 
calibration is the mathematical process of searching for a solution that minimizes or 
maximizes an objective function (i.e. a function quantifying a measure of error based on 
model simulations and observed data), by adjusting the values of n unknown parameters, 
i.e., a search in n-dimensional space. The general goal is to find a global best-fit, but in 
complex models this is often difficult, and it is not uncommon to find model calibration 



2. Improve Model Robustness for Typical Applications 

Memo 4. Recommendations for Modeling Best Practices 23 

codes settling in local minima.  Superficially, local minima have some features of a global 
minimum, but formally, they do not represent the best parameter fit.   

There is a wide range of objective functions commonly used in the literature for model 
calibration and testing.  Selecting an appropriate objective function for model calibration 
and testing has been a subject of continuing discussions in the literature of 
environmental modeling.  Table 3 presents a list of common model performance metrics.  
Since all model performance metrics have strengths and weaknesses, it is recommended 
that more than one metric (i.e., multi-objective optimization) be considered for 
calibration/testing of models.  However, care should be taken as these metrics have 
different units and ranges.  There are numerous published algorithms to help perform 
this search that are used in conjunction with environmental models, of which the 
Parameter Estimation and Uncertainty Analysis (PEST) tool is widely used for 
environmental models (theory in Doherty and Hunt, 2010; Doherty, 2015; example 
application in Doherty and Johnston, 2003). A list of widely used model sensitivity, 
calibration, and uncertainty analysis frameworks along with brief description is presented 
in Chapter 3.4. 

The search process of finding best-fit parameters in calibration requires the model to be 
run multiple times, each run using a new combination of parameter values.  As the 
number of parameters in a model grows, and as the model run-time increases, the 
computational burden of automated calibration grows exponentially.  In many cases 
where complex, computationally intensive models are being used (with single run times 
over hours to days), calibration is often a more manual process, with expert users 
interacting with the model and applying knowledge of the parameter space to tune the 
overall performance.  In a manual calibration process, model parameters are essentially 
tuned to minimize the difference between the model simulation and observed data. This 
is an iterative procedure and usually several rounds of model runs are performed to 
locate parameters that mimic the observed data with reasonable accuracy. Alternatively, 
additional computer resources are deployed during the calibration period, running the 
model on supercomputers or on the cloud to circumvent the computational burden. 

Table 3. Common Model Performance Evaluation Metrics 

General 
category 

Performance 
metric 

Description Issues Reference

Standard 
Regression 

Slope and y-
intercept 

The slope indicates the relative 
relationship between simulated and 
measured values. The y-intercept 
indicates the presence of a lag between 
simulated and measured data, or that the 
data sets are not perfectly aligned. A 
slope of 1 and y-intercept of 0 indicate 
that the model perfectly reproduces the 
measured data. 

Most often the 
underlying 
assumptions of linear 
regression (normality, 
randomness, etc.) are 
overlooked which can 
undermine the 
credibility of the 
inference from a 
regression model 

Willmott, 
1981 
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General 
category 

Performance 
metric 

Description Issues Reference

Pearson's 
correlation 
coefficient (r) 
and coefficient 
of 
determination 
(R2) 

r and R2 indicate the degree of 
collinearity between simulated and 
measured data. r, is an index of the 
degree of linear relationship between 
observed and simulated data and ranges 
from −1 to 1. If r = 0, no linear 
relationship exists. If r = 1 or −1, a perfect 
positive or negative linear relationship 
exists. Similarly, R2 describes the 
proportion of the variance in measured 
data explained by the model. R2 ranges 
from 0 to 1, with higher values indicating 
less error variance, and typically values 
greater than 0.5 are considered 
acceptable. 

r and R2 are very 
sensitive to high 
extreme values 
(outliers) and 
insensitive to additive 
and proportional 
differences between 
model predictions and 
measured data. 

Santhi et 
al., 2001 

Dimensionless 

Index of 
agreement (d) 

Standardized measure of the degree of 
model prediction error and varies 
between 0 and 1. A computed value of 1 
indicates a perfect agreement between 
the simulated and measured values, and 
0 indicates no agreement at all. 

d is overly sensitive to 
extreme values due to 
the squared 
differences. 

Willmott, 
1981 

Nash-Sutcliffe 
efficiency (NSE) 

The Nash-Sutcliffe efficiency (NSE) is a 
normalized statistic that determines the 
relative magnitude of the residual 
variance (“noise”) compared to the 
measured data variance (“information”). 
NSE ranges between −∞ and 1.0 (1 
inclusive), with NSE = 1 being the optimal 
value. Values between 0 and 1.0 are 
generally viewed as acceptable levels of 
performance. Values <0 indicate that the 
mean observed value is a better predictor 
than the simulated value, indicating 
unacceptable performance. 

NSE is sensitive to 
high extreme values. 

Nash and 
Sutcliffe, 
1970 

Persistence 
model 
efficiency 
(PME) 

PME is a normalized model evaluation 
statistic that quantifies the relative 
magnitude of the residual variance 
(“noise”) to the variance of the errors 
obtained by the use of a simple 
persistence model. PME ranges from 0 to 
1, with PME = 1 being the optimal value. 
PME values should be larger than 0.0 to 
indicate “minimally acceptable” model 
performance. 

Explicit assumption 
that variance 
increases linearly with 
time which should be 
revisited depending 
on the problem 

Gupta et 
al., 1999 



2. Improve Model Robustness for Typical Applications 

Memo 4. Recommendations for Modeling Best Practices 25 

General 
category 

Performance 
metric 

Description Issues Reference

Prediction 
efficiency (Pe) 

Pe is the coefficient of determination (R2) 
calculated by regressing the rank 
(descending) of observed versus 
simulated constituent values for a given 
time step. Pe determines how well the 
probability distributions of simulated and 
observed data fit each other. A prediction 
efficiency of 1 is perfect agreement at all 
times. Prediction efficiencies less than or 
equal to 0 do not provide useful 
predictions of the time variation of the 
observations. 

Sensitive to high 
extreme values 

Santhi et 
al., 2001 

Performance 
virtue statistic 
(PVk) 

The performance virtue statistic (PVk) is 
the weighted average of the Nash-
Sutcliffe coefficients, deviations of 
volume, and error functions across all 
flow gauging stations within the 
watershed of interest. PVk can range from 
−∞ to 1.0, with a PVk value of 1.0 
indicating that the model exactly 
simulates all three aspects of observed 
flow for all gauging stations within the 
watershed. 

Since the main criteria 
used is NSE, this 
metric can also be 
prone to biases from 
large error residuals 

Wang and 
Melesse, 
2005 

Logarithmic 
transformation 
variable (e) 

The logarithmic transformation variable 
(e) is the logarithm of the 
predicted/observed data ratio. The value 
of e is centered on zero, symmetrical in 
under- or overprediction, and 
approximately normally distributed. 

Not widely used and 
may not add much 
value considering the 
underlying 
distribution 

Parker et 
al., 2006 

Error Index 

Mean absolute 
error (MAE), 
Mean square 
error (MSE), 
and Root mean 
square error 
(RMSE) 

RMSE, MAE, and MSE values of 0 indicate 
a perfect fit. RMSE and MAE values less 
than half the standard deviation of the 
measured data may be considered low 
and that either is appropriate for model 
evaluation. 

Since these metrics 
use averaging on error 
residuals, they may 
not be suitable as an 
objective function for 
calibration. However, 
they can be used as 
additional 
performance validity 
metrics once the 
model is calibrated. 

Moriasi et 
al., 2007 
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General 
category 

Performance 
metric 

Description Issues Reference

Percent Bias 
(PBIAS) 

Percent bias (PBIAS) measures the 
average tendency of the simulated data 
to be larger or smaller than their 
observed corresponding values. The 
optimal value of PBIAS is 0.0, with low-
magnitude values indicating accurate 
model simulation. Positive values 
indicate model underestimation bias, 
and negative values indicate model 
overestimation bias. 

The effects of 
individual error 
residuals may 
smooth out due to 
averaging 

Gupta et 
al., 1999 

RMSE-
observations 
standard 
deviation ratio 
(RSR) 

RSR standardizes RMSE using the 
observations standard deviation, and it 
combines both an error index and the 
additional information. RSR is 
calculated as the ratio of the RMSE and 
standard deviation of measured data. 
RSR varies from the optimal value of 0, 
which indicates zero RMSE or residual 
variation and therefore perfect model 
simulation, to a large positive value. 
The lower RSR, the lower the RMSE, 
and the better the model simulation 
performance. 

Same issues with 
RMSE 

Gupta et 
al., 1999 

Another fundamental challenge associated with model calibration is that the relationship 
between model error and fitting parameters (termed the error surface) may be complex 
and fitting procedures may produce locally-optimum rather than globally-optimum 
parameter values.  Local and global minima for a single variable are shown conceptually 
in Figure 11.  Parameter identifiability is the possibility of learning the true values of 
underlying parameters with a large experimental dataset (Raue et al., 2009).  Parameter 
identification for complex models is very challenging and true parameters values are 
often not obtained because of the increased computation burden.  The topic of 
parameter estimation in environmental models is an active area of research, focusing on 
improving efficiency in search strategies and on finding global best fits (Solomatine et al., 
1999; Thiemann et al., 2001; Madsen, 2003; Zhang et al., 2011; van Vliet et al., 2016). 
Regardless of the approach used for calibration, model documentation should describe 
the approach and explain why the approach is credible for a specific model. 
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Figure 11. Schematic representation of a complex error surface with multiple local minima. 

2.7 Quantitative Model Evaluation and Validation 

The term validation has traditionally referred to the process of comparing model 
predictions with a data set that is independent of model calibration.  While this process 
can provide a generally reasonable evaluation or assessment of the model performance, 
interpretation of validation results should be developed with care. All models contain 
inherent uncertainty, which makes the term “validation” somewhat of a misnomer. 
Because of the term’s root (i.e. “valid”), the process of model validation implies an 
unjustified assertion of legitimacy (e.g. Oreskes and Belitz, 2001).  According to this 
argument, the use of the word validation is misleading in the context of assertions or 
implications that models accurately reflect underlying natural processes and can be used 
to provide reliable input for policy and decision making. For example, there is 
unavoidable uncertainty associated with the subjectivity of what constitutes acceptable 
error (Konikow and Bredehoeft, 1992). 

More generally, the term model validation, as used here, refers to an idea or hypothesis 
of how a system works or operates, expressed quantitatively.  When considering the 
process of modeling and its evaluation, assessment and value, it is important to note that 
any physical theory is always provisional.  “No matter how many times the results of 
experiments agree with some theory, you can never be sure that the next time the result 
will not contradict the theory. On the other hand, you can disprove a theory by finding 
even a single observation that disagrees with the predictions of the theory (Hawking, 
1988).  Site-specific hydrologic and ecosystem models are elements of applied science -- 
in effect, an agglomeration of multiple physical, chemical and biological theories.  As 
such, they are subject to improvement via invalidation, but cannot be proven valid 
because validation does not necessarily add to the fund of knowledge. 

The above theoretical and philosophical discussion is important and environmental 
modelers should be aware of the fundamental limitations of the term “model validation.”  
A more appropriate term that may be used for describing model performance with 
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respect to observational data is “evaluation” or “testing”, considering not only the 
modeling fit but also the underlying assumptions that led to that outcome (NRC, 2007).  
However, we recognize that in recent years, the term model validation has come to be 
defined more narrowly in the environmental, engineering and modeling communities: as 
the assessment of a model’s predicted performance against a set of field data, where the 
model has been calibrated using an independent set of field data.  When extended to the 
non-modeling community and stakeholder, a more qualified approach would help in 
presenting the model outcomes in the context of model limitations, assumptions and 
uncertainty. 

Given the above broader considerations on terminology, at a more practical level, a 
common framework may be used for evaluating model results in a systematic manner.  A 
range of visualization approaches (one or more of the combinations shown in Figure 12) 
is considered suitable for evaluating quantitative results of the performance of a 
previously calibrated model.  A model’s target performance may be defined as part of the 
stated modeling purpose or based on the best professional judgment of the modelers, 
given the uncertainties in input data, model parameters, and model structure. 

2.8 Non-Quantitative Model Evaluation and Validation 

Going beyond the evaluation of numeric results and data as identified in the previous 
section, given our experience with environmental models, a broader set of 
considerations may be applied: 

• The bias of stasis.  When model parameters are adjusted to obtain a best fit with 
historical data, a bias is created towards existing trends, even when driving forces 
indicate that the model will diverge from existing conditions.  A relevant example for 
modeling hydrology in California and the Delta is hydrologic effects from climate 
change.  Changing climate is affecting driving forces including evapotranspiration 
trends, the frequency and magnitude of precipitation events, and changes in 
groundwater and surface water pumping in response.  These driving forces are 
outside the typical range in the historical record and thus the future conditions may 
diverge outside of a model built on past conditions.  It will often be important to run 
models with varying assumptions about driving forces. 

• Capturing causal processes.  If the underlying causal processes are important, as is 
the case with most hydrologic and ecosystem models, the model must capture them 
to be reliable. Model post-audits (see next chapter) can serve to provoke curiosity 
about why the model does or does not make accurate predictions. 

• Conceptualization.  Models may match observations but still be conceptually 
flawed.  Advances in computational power may help with this in the sense that if a 
model is run using an exhaustive sampling of parameter values and comes up short, 
a conceptual error is likely. This is perhaps the thorniest of modeling issues and a 
difficult one to address, and the reason post-audits are so important. 
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Figure 12. Visualization of adequacy of model performance.  Following Crout et al. (2008), but applied to salinity at 
Martinez in the western Delta, using observed data (Hutton et al., 2015) and a published model of salinity (Rath et 
al., 2017). (a) Linear time series plots of data and observations (solid line: model; dashed line: observations), (b) 
log-scale time series plots, (c) plot of residuals (difference between modeled and observed values), (d) observed 
versus modeled data on a linear scale, (e) cumulative distribution function of observed and modeled values, (f) 
observed versus modeled data on a log scale, and (g) autocorrelation function of residuals. 
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• Overparameterization.  The level of model complexity and number of parameters 
should be commensurate with the available data and required predictive resolution. 
Model developers refer to the concept of “model parsimony,” which is the 
development of models with the least number of parameters that adequately 
explain a relevant phenomenon.  While more complex models can be made to fit 
observed data, this “over-fitting” approach may result in limited model ability to 
generalize. 

Model “validation” should not only include a post-audit but also a close look at the model 
conceptualization, the ability to capture causal processes, biases (including biases 
towards stasis), and parameterization. 

2.9 Model Documentation for Users and Developers 

Documentation may apply to both a general modeling framework and to a specific 
application.  With respect to a framework, in many cases model frameworks are 
developed and maintained over years, sometimes with different individuals or teams 
with changing member composition.  Good model documentation should serve the 
needs of developers and users and may be accomplished by using the same set of 
documents.  Ideally, documentation should be prepared in a manner that contains 
enough information to allow for the long-term evolution of a model, both within the 
organization and external to it.  From the perspective of external users in particular, 
documentation should explain the basis of the model and its use, including how key input 
variables are selected.  Such documentation should include representative input files and 
result files to allow a user to reproduce a basic set of scenarios. 

In the case of a specific application, documentation needs to be oriented toward 
explaining the best practice elements that are outlined in this section, including, model 
purpose, input data used, calibration approach, model evaluation, and model results in 
the context of the intended purpose. 

Writing model documentation is an essential step in model development. However, 
under short timelines and tight budgets, preparing documentation may become a low 
priority, particularly for models developed for a specific application with no expectation 
of re-use. Missing, inadequate, or out-of-date documentation is a barrier to model 
integration and may result in duplication of effort because a potentially suitable model 
may be overlooked for inclusion in an integrated modeling process. 

Documentation can be broadly classified as internal and external. Internal documentation 
is generally embedded within the code in the form of function descriptions, code 
comments, etc. Internal documentation is important and should follow the conventions 
of the programming language(s) used to build to the model. External documentation is 
generally written for three audiences: (1) the developer(s) building, maintaining, and 
updating the model, (2) other modelers interested in the details of the model, including 
those interested in integration, and (3) users of the model with no need to understand 
the inner details of the model. 
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Writing documentation that is easily understood across modeling domains is one of the 
challenges for model integration. The following elements are recommended to produce 
good documentation that facilitates integration: 

• A general description of the model that includes the modeling goals and the scope 
of the model. 

• A point of contact for the model and information about how to get started using the 
model, including download links, installation instructions, hardware requirements, 
and licensing costs (if applicable). 

• Assumptions and limitations of the model. 

• Model relationships and mathematical methods used. 

• Data used to inform model relationships and input data requirements to run the 
model, including example input files. 

• Model output format(s), including example output files. 

• Representation of uncertainty. 

• Availability of tools for conducting sensitivity analysis, post-processing results, etc. 

• Table(s) with all model parameters and their default values. 

A recent set of documents prepared for the California Central Valley Simulation Model 
(C2VSIM; provided online at https://water.ca.gov/Library/Modeling-and-Analysis/Central-
Valley-models-and-tools/C2VSim) is an excellent example of documentation addressing 
most of the questions above, and serving a range of audiences. 

2.10 Summary 

This chapter provides a brief summary of actions that need to be undertaken to improve 
the robustness of virtually all modeling exercises, beginning with the definition of the 
modeling purpose, developing conceptual models to communicate with stakeholders and 
provide an understandable version of the model, preparation of standardized datasets 
that can be used to replicate a modeling study and compare across models, verification 
of code to ensure that the theoretical framework has been correctly implemented 
(especially true of newly developed models), an adequately documented calibration 
process to obtain adjustable parameters, and effective visualization of model 
performance over new data sets.  The term validation is often used to describe the 
testing of model performance with new data, although a more neutral term, evaluation, 
may be preferred because the typical process of model testing is always bound to be 
limited to a range of data, and few models can be truly considered valid under all 
conditions. If a modeler chooses to use the term validation — consistent with the science 
and engineering literature—it is important to communicate to non-specialists its more 
narrow definition associated with modeling practice. 

In addition, these best practices also suggest a broader exploration of model structure 
and bias, going beyond the routine calibration and evaluation/validations exercises, 
especially when observed data do not match model predictions.  Finally, for the long-
term utility of a model, it is essential that adequate documentation be developed, 
meeting the current and future needs of users and modelers.  Additional steps can be 
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taken to improve the robustness of modeling exercises, but it may not be practical to 
require them for all studies; a list of such practices for more complex models is described 
in the following chapter. 
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3 Improve Model Robustness for 
Key Applications 

The previous chapter summarized actions that need to be undertaken to improve the 
robustness of virtually all modeling exercises. Additional actions are recommended 
beyond those previously summarized when model applications entail greater complexity 
(e.g. integrated models) and/or when model applications are used to support critical 
decision making that will have significant societal consequences in terms of benefits, 
costs, and risks. These additional actions will almost always require more time and 
resources to complete, and this should be clearly scoped with the model sponsors and 
stakeholders.  While greater costs are associated with these actions, the resulting model 
outcomes will be more robust and more generally accepted by the modeling community 
and model users. 

3.1 Peer Review 

Peer-review is the process of soliciting input from experts who are not involved in a 
particular study but are familiar with the general topic.  Peer review should provide 
timely, open, fair and helpful input and should ideally occur at various stages of the 
modeling life cycle, including conceptual model development, model implementation in 
code, and model application to specific geographic area or problem. 

Experience indicates that peer review is most helpful when the following conditions are 
met: i) peer review is conducted in an atmosphere of transparency, collaboration and 
shared sense of purpose; ii) the review team reviews the source material and modelers’ 
responses to their comments; iii) adequate time and funding is budgeted for review; and 
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iv) the review team contains some interdisciplinary membership to allow for a broader 
evaluation of basic assumptions and utility of the exercise.  If a sincere commitment to 
obtaining constructive feedback is not made through the above steps, there is a risk that 
peer-review becomes more of a rubber-stamp than a positive contribution to a modeling 
study. Normally, a peer review can increase acceptance of a project.  

We recommend that most complex and consequential model studies in the Delta be 
subject to peer review.  Usually such reviews are conducted by the organization 
sponsoring the model study.  For newly developed model frameworks, the process of 
anonymous peer review required by scientific journals serves as the touchstone for 
validation of a modeling study and is also recommended. 

3.2 Sensitivity Analysis 

Sensitivity analysis explores how changes in model inputs—most generally, boundary 
conditions, parameters, or configuration (as shown in Figure 3)—affect the variation in 
model outputs. Sensitivity analysis can illustrate which parameters have the least effect 
on results of interest, and in some cases, may allow for reduction of model complexity, by 
streamlining process representation.  A related concept is uncertainty analysis, where 
model inputs are presented in a probabilistic form (i.e., as a distribution of values based 
on current information) to a calibrated model and the effects on model output are 
evaluated as shown in Figure 13.  Sensitivity analysis also complements model calibration, 
which involves selecting parameter values based on the fit between model output and 
actual observations. Performing sensitivity analysis after model calibration helps to 
identify which fitted parameters are close to optimal estimate because low sensitivity 
indicates high uncertainty in the fitted parameter estimate.  Both sensitivity and 
uncertainty analysis require the running of a model multiple times with a range of inputs.  
Specific steps for uncertainty analysis are described in the following section. 

Sensitivity analysis is often used prior to conducting uncertainty analysis to increase the 
efficiency of uncertainty analysis by reducing the dimensionality of the model. Using 
sensitivity analysis, the modeler determines which model parameters have the highest 
impact on simulations (Saltelli et al., 2008).  This will help the modeler to decide which 
model parameters should be included in the uncertainty analysis procedure, thereby 
increasing the efficiency of uncertainty analysis. Because sensitivity analysis of complex 
models can be highly computationally demanding, it is a focus of current research to help 
improve efficiency and applicability. 

Typically, sensitivity methods are categorized into local (LSA) and global sensitivity 
analysis (GSA) techniques. Basically, LSA methods analyze sensitivity of model responses 
around some point in input parameter space (ideally around optimal locations), while 
GSA methods analyze the variability of model responses across the full parameter space 
(Figure 14). Figure 14 Illustrates the concept of local and global sensitivity analysis for a 
model with two parameters. For a model with larger number of parameters the 2D 
response surface will change to a more than 2-dimension (dimension dependent on the 
number of parameters) response space. Each black dot represents a combination of 
parameters used to quantify model response and ultimately determine the sensitivity of 
model response to each parameter. 
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Figure 13. Simplified representation of sensitivity and uncertainty analyses.  Inputs in this context may include 
parameter values, initial conditions and boundary conditions that are used for a single model run.  During 
sensitivity analysis a model is run with a range of values for key inputs and the corresponding range in one or more 
outputs is evaluated. As part of uncertainty analysis, inputs are assigned ranges in values based on known 
estimates. 
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Figure 14. Illustration of the concept of local (left panel) and global sensitivity analysis (right panel) for a model 
with two parameters. For a model with larger number of parameters the 2D response surface will change to more 
than 2-dimension (dimension dependent on the number of parameters) response space. Each black dot represents 
a combination of parameters used to quantify model response and ultimately quantify sensitivity to each model 
parameter. 

LSA is a partial derivative-based method to investigate the response of a small 
disturbance of each parameter around a specific location in parameter space on model 
output (Baroni and Tarantola, 2014). A common approach for conducting LSA is the one-
factor-at-a-time (OAT) method (Yang, 2011). In OAT, one parameter is changed at each 
iteration. LSA techniques are appropriate for relatively simple models that show linear 
responses. Although LSA is computationally efficient and popular, it is not suitable for 
reducing the dimensionality of complex non-linear environmental models as it disregards 
the correlation between model parameters, and its results are dependent on location 
and often there is a lack of knowledge on the suitable location, i.e., the parameter true 
value (Saltelli et al., 2008). 

GSA investigates the effect of variations over the entire prior parameter space on model 
output (Saltelli et al., 2008; Pianosi et al., 2016).  A sensitivity analysis approach that is 
commonly used with GSA is the “All-at-a-time” (AAT) approach.  GSA does not have the 
limitations associated with LSA, as it does not rely on a pre-known optimal location for 
parameters.  A common approach for GSA is rooted in relating the variance of the model 
responses to the change in input parameters (variance-based techniques).  Variance-
based sensitivity methods have shown very promising results. However, the sample size 
required to achieve reasonably accurate approximations can be rather large, which 
compromises their applicability to highly complex models. Several methods have been 
proposed to reduce the required number of model evaluations for approximating the 
variance-based indices. These include: (i) methods using the Fourier series expansion of 
the model outputs, such as Fourier Amplitude Sensitivity Test (FAST) for the 
approximation of the first-order indices, and the extended FAST for the total-order 
indices; and (ii) methods rooted in application of a model emulator which will be 
discussed further in proceeding sections. 
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3.3 Uncertainty Quantification and Propagation 

Models, as simplifications of reality, are subject to various forms of uncertainty. In 
environmental models specifically, these sources of uncertainty include: i) parameters, ii) 
structure (model conceptualization), iii) initial state variables, iv) configuration and input 
variables, and v) observation data used for training and testing the model.  Further, the 
nature of uncertainty can be categorized into epistemic uncertainty and aleatory 
uncertainty or stochastic uncertainty (Walker et al., 2003).  Epistemic uncertainties stem 
from our lack of knowledge and they can be reduced with additional collection of data.  
In contrast, aleatory uncertainties originate from inherent variability and stochasticity of 
natural phenomena (e.g., climatic variability). Aleatory uncertainties cannot be reduced 
by collection of more data.  For certain natural phenomena, this means that there is no 
direct way of getting perfect knowledge. Climate predictions over different time scales 
are perhaps the most common example of aleatory uncertainty in environmental models.  
Modeling applications typically include both epistemic and aleatoric uncertainties. 

The lack of accounting for uncertainties when applying models may result in biased and 
unreliable results which will directly affect the decisions made based on the modeling 
results (Beven and Binley, 1992; Refsgard et al., 2007; Bastin et al., 2013).  Various 
methods have been proposed to address the uncertainties from model parameters 
(Moradkhani et al., 2005), input data (Kavetski et al., 2003), monitoring data (Harmel and 
Smith, 2007), and model structure (Ajami et al., 2007) in hydrologic and water quality 
models. 

Uncertainty assessment methods fall under one of two classifications: forward 
uncertainty propagation and inverse uncertainty quantification. In forward propagation 
methods, uncertainties in model inputs are propagated to the model outputs. In inverse 
uncertainty quantification methods, posterior distributions of model parameters are 
derived based on discrepancies between model simulations and observations and values 
of likelihood function. Inverse quantification of uncertainty is much more complex than 
forward propagation of uncertainty, as the modeler is essentially solving the problem in 
reverse (similar to calibration). However, the method provides essential benefits when 
modeling as in most cases the uncertainties associated with various model elements 
(parameters, inputs, etc.) are initially unknown and using an inverse approach, the 
modeler can estimate the most consequential uncertainties, and select them for further 
evaluation. Thus, these uncertainties can be propagated to simulations through a 
forward approach. In most inverse uncertainty quantification applications, the overall 
modeling uncertainties are quantified as a lumped value as quantifying the uncertainties 
associated with each model components is very time-consuming and in some cases 
impossible. Specifically, in highly complex integrated environmental models, 
decomposition of uncertainty and attributing portions of total uncertainty (total error) to 
various sources of uncertainty is an extremely challenging task which still is a subject of 
extensive ongoing research (Bastin et al., 2013). 

Bayesian-based methods are among the most commonly used assessment techniques for 
conducting uncertainty analysis for complex environmental models (Jia et al., 2018). 
Bayesian uncertainty analysis methods, rooted in Bayes’ Theorem, quantify parameter 
uncertainty by deriving the posterior parameter distribution from a combination of prior 
parameter distribution and a likelihood function. In most environmental models, 
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specifically more complex models, the analytical solution to derive the explicit functional 
form of the posterior distribution is infeasible. Hence, sampling is often used to derive 
the posterior distribution. The Markov Chain Monte Carlo (MCMC) sampling schemes 
provide efficient algorithms to derive the posterior parameter distribution (Rath et al., 
2017; Tasdighi et al., 2018). In this regard, multi-chain MCMC methods have proven 
superior performance and efficiency in sampling the parameter space and deriving the 
posterior distributions.  Application of multiple Markov chains enhances the efficiency of 
the search algorithm and reduces the chance of being trapped in local optima (Ter Braak, 
2006). Two common multi-chain MCMC algorithms frequently used for environmental 
models are the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt, 
2016) and the Shuffled Complex Evolution Metropolis (SCEM) algorithm (Duan et al., 
1992; Vrugt et al., 2003).  While multi chain MCMC algorithms have been employed in 
conducting uncertainty analysis for various environmental models, their application to 
integrated model frameworks remain very limited due to computational burden 
(Tscheickner-Gratl et al., 2019). 

Another source of model uncertainty, discussed much less frequently, is related to 
human decisions regarding process representation in a model, including underlying 
assumptions and prioritization. Although this human-imposed bias cannot be evaluated 
quantitively, it should be considered as part of a broader validation and peer-review 
exercise. 

3.4 Frameworks for Model Calibration, Sensitivity, and Uncertainty Analysis 

Most model evaluation techniques are built around iterative approaches that entail 
running the model multiple times. For large models with long run times, iterative 
approaches can be very challenging. Integrated environmental models pose particular 
challenging as they are highly parametrized and often have multiple component models 
that work jointly to generate results.  General approaches to address this issue include 
1) employing more computational power (more computational capacity from software 
and hardware), and 2) revising the model evaluation algorithms to be more efficient in 
exploring the model response space.  Often, both approaches are needed for evaluating 
complex models. A summary of common tools for conducting model evaluation is 
presented below. 
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Table 4. Common Tools for Model Calibration, Sensitivity, and Uncertainty Analysis 

Tool Features 

PEST PEST (Parameter Estimation and Uncertainty Analysis) was the first model-independent tool of its kind 
and has gained a large, diverse following in various branches of environmental modeling. While initial 
versions of PEST only supported Gauss-Marquardt-Levenberg (GML) parameter estimation technique, 
more recent versions have added numerous features including: sophisticated regularization schemes, 
globalized GML (GGML) capabilities, implementations of the Shuffled Complex Evolution (SCE) and 
Covariance Matrix Adaption Evolutionary Strategy (CMA-ES) global search algorithms, post-regression 
diagnostics, and predictive uncertainty analysis capabilities. PEST is freely available to the public and 
can be accessed from: http://www.pesthomepage.org/Home.php.  Papadopulos & Associates Inc. 
have recently developed two commercial versions of PEST that benefit from high performance parallel 
computing and cloud-based computing, making it specifically suited for integrated environmental 
models. The company uses Microsoft Azure Cloud for running highly parallelized PEST, which 
substantially reduces the run time and provides essential benefits for sensitivity, calibration, and 
uncertainty analysis. The service is commercial, and details can be accessed from: 
https://www.sspa.com/training/pesthp-and-pestcloud

DAKOTA DAKOTA toolkit links to a variety of well-established model optimization packages and libraries into a 
model-independent flexible package. The tool's advanced parametric analyses enable design 
exploration, model calibration, sensitivity analysis, risk analysis, and quantification of uncertainty. 
DAKOTA users can select from a diverse and ever-expanding suite of parameter estimation 
algorithms. Available algorithms span the entire range of single solution approaches (i.e., local, global 
and hybrid), and numerous multi-objective and surrogate-based options. Dakota is open source, with 
applications spanning environment and climate modeling, computational materials, nuclear power, 
renewable energy, and many others. DAKOTA can be accessed from: https://dakota.sandia.gov/

OSTRICH OSTRICH (Optimization Software Toolkit for Research Involving Computational Heuristics) toolkit is a 
model-independent and multi-algorithm optimization and calibration tool. It can be used for weighted 
non-linear least-squares calibration of model parameters or for constrained optimization of a set of 
design variables according to a user-defined objective or cost function (single or multi-objective 
supported). OSTRICH implements numerous local, global, and hybrid search algorithms, including 
multi-start GML, Particle Swarm Optimization (PSO), and Dynamically Dimensioned Search (DDS). 
OSTRICH also contains a module for efficient multi-model calibration, ranking and selection. OSTRICH 
supports Message Passing Interface (MPI)-based parallel processing on both Windows and Linux 
machines. The parallel version of OSTRICH is called OstrichMPI. OSTRICH is available for free to the 
public and can be accessed from: http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html

UCODE UCODE is a model-independent toolkit for conducting model sensitivity, calibration, and uncertainty 
analysis. UCODE implements the gradient-based GML, non-linear regression algorithm, and calculates 
numerous post-regression statistics. UCODE input/output files follow the Joint Universal Parameter 
IdenTification and Evaluation of Reliability (JUPITER). Application Programming Interface (API) 
specification and can be utilized directly by similarly compliant uncertainty assessment programs, 
such as Multi-Model Averaging (MMA), a tool for multi-model analysis. UCODE is available for free to 
the public and can be accessed from: https://igwmc.mines.edu/ucode-2/

SimLab SimLab is a software designed for Monte Carlo (MC)-based uncertainty and sensitivity analysis (SA). 
Various sampling procedures are used for conducting MC. Among those are: random sampling, 
stratified sampling (including Latin Hypercube Sampling), and quasi-random sampling. SimLab 
supports screening-level methods along with several variance-decomposition algorithms, including 
Fourier Amplitude Sensitivity Testing (FAST), extended FAST (eFAST), and method of Sobol for Global 
Sensitivity Analysis. SimLab also supports numerous regression and correlation-based SA techniques. 
SimLab toolkit is free to download for the public and can be accessed from: 
https://ec.europa.eu/jrc/en/samo/simlab
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Tool Features 

GLUE GLUE (Generalized Likelihood Uncertainty Estimation), utilizes a Monte Carlo importance-sampling 
procedure to locate behavioral parameter sets and estimate parameter distributions. The mGLUE tool 
enhances GLUE efficiency utilizing an artificial neural network as a surrogate for model evaluation. 
The network is trained using the results of a genetic algorithm (GA), in which “niching” reduces bias in 
the subsequent surrogate-based GLUE samples. GLUE has been applied to a wide variety of fields 
including rainfall-runoff modelling, flood inundation, water quality modelling, sediment transport, 
recharge and groundwater modelling, vegetation growth models, aphid populations, forest fire and 
tree death modelling. There are multiple versions of GLUE in different programming languages 
available to the public for free. A Python version can be accessed from: 
https://pypi.org/project/pyGLUE/

3.5 Novel Approaches for Confronting Computational Burden of Sensitivity and 
Uncertainty Analysis for Complex Model Frameworks 

Conducting sensitivity and uncertainty analysis for complex model frameworks is often 
challenging due to the high computational cost of running them. Indeed, continually 
exercising the simulator to carry out tasks such as sensitivity analysis, uncertainty 
analysis, and parameter estimation is often infeasible (Baustert et al., 2018).  Modelers 
are then faced with only a limited number of model realizations for conducting their 
analysis. A common approach sometimes used to overcome this pitfall is application of 
model emulators. Application of cloud-based platforms and parallel computing are also 
becoming possible with more computational power from supercomputers and clusters. 

Emulators. Emulators basically represent the input/output relationships in a model with 
a statistical surrogate to reduce the computational cost of model exploration. In this 
approach, the computer model is viewed as a black box, and constructing the emulator 
can be thought of as a type of response-surface modeling exercise (Box and Draper, 
1986). The aim is to establish an approximation to the input-output map of the model 
using a limited number of complex model runs. For instance, an emulator can be used to 
stand in place of a complex computer model when conducting sensitivity or uncertainty 
analysis. Of course, as with any approximation, there is a reduction in the accuracy of the 
estimates obtained, and the trade-off between accuracy and cost needs to be considered 
by the modeler. 

There are two commonly used emulators for mimicking complex environmental models 
(National Research Council, 2012). The first type attempts to approximate the 
dependence of the computer model outputs on the inputs. In this case, the uncertainty 
comes from not having observed the full range of model outputs or from the fact that 
another model is used in place of the costly computational model of interest. These 
emulators include: (i) regression models; (ii) Gaussian process (GP) interpolators and 
Lagrangian interpolations of the model output; and (iii) reduced-order models. The 
second type of emulators are similar, with the additional considerations that the input 
parameters are now themselves uncertain. So, the aim is to emulate the distribution of 
outputs, or a feature thereof, under a prespecified distribution of inputs. Statistical 
sampling of various types (e.g., Monte Carlo sampling) can be an effective tool for 
mapping uncertainty in input parameters to uncertainty in output parameters (McKay et 
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al., 1979). In its most fundamental form, sampling does not retain the functional 
dependence of output on input, but rather produces quantities that have been averaged 
simultaneously over all input parameters. Alternatively, approaches such as polynomial 
chaos attempt to leverage mathematical structure to achieve more efficient estimates of 
quantities of interest (National Research Council, 2012). 

Greater Computational Resources. Another approach for confronting the high 
computational demand of complex models and integrated model frameworks is cloud-
computing. Cloud-computing is the on-demand availability of computer system 
resources, especially data storage and computing power, without direct active 
management by the user. The term is generally used to describe data centers available to 
many users over the Internet. Large clouds, predominant today, often have functions 
distributed over multiple locations from central servers (Chen et al., 2018). Clouds 
provide vast amounts of computational power in a very short amount of time which can 
be used to accelerate the execution of sensitivity and uncertainty analysis runs for 
complex models.  Parallel computing resources may also be deployed in such cases and 
have been applied for calibration of certain models in the Delta. 

3.6 Alternative Models 

For key problems, it is possible (and even preferable) to consider different models to 
evaluate scenarios.  Where multiple models are available—as is case with models for 
simulating hydrodynamics, watersheds, and groundwater—ranging in theoretical 
formulation, complexity, availability and accessibility, it is worthwhile to perform 
comparative studies and evaluate model performance under different conditions.  This 
may be especially beneficial when the modeling effort is being used to support a major, 
consequential decision.  Differences across models provide insight into potential sources 
of error or inadequate representation in the conceptual model.  In some cases, more 
complex models (e.g., three-dimensional fluid flow models versus two- or one-
dimensional models) may provide more nuanced results, but in other cases simpler 
models may be easier to communicate with decision-makers and stakeholders.  Indeed, 
where possible, there is a benefit to supporting a hierarchy of models with different 
levels of complexity to better communicate with different users and potentially to allow 
different levels of integration across models. 

There is also a potential downside to implementing alternative models for the same 
problem, in terms of diluted resources, disagreements between model experts on narrow 
model formulation issues, and confusion and lack of confidence on the part of 
stakeholders.  Consequently, alternative models should not be considered as a general 
solution, but considered for major, complex problems where alternate theoretical 
formulations are possible.  Perhaps the most common examples of alternative models 
used in the Delta are those for climate change projections (where a suite of models has 
been recommended for use in climate studies by Cal-Adapt, www.cal-adapt.org) and 
hydrodynamics and salinity transport in the estuary (the SCHISM, UnTRIM, RMA and 
Delft3D models, as described in Memo 1). 
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3.7 Post Audit: Compare Model Results to Future Data Being Collected 

For models that are used to make near-term forecasts, but also for longer-term 
predictions, it is important to revisit model outcomes and to compare field observations 
with previously made model predictions.  This process is termed a post-audit, and its 
importance has been highlighted in other modeling guidance as well, notably, the 
Guidance on the Development, Evaluation, and Application of Environmental Models
(USEPA, 2008).  For major models that are often in use for a decade or longer, and where 
supporting observed data continue to be collected, a post-audit is not very difficult to 
implement.  A post-audit can provide insight on conditions under which model 
performance was acceptable and in line with prior calibration history, thus providing 
credibility to the model and related modeling studies.  A post-audit may also result in the 
opposite outcome.  Under conditions where model performance was poorer than 
expected, the post-audit provides an excellent opportunity to revisit the fundamental 
conceptual model and/or the model calibration.  Indeed, a post-audit can provide an 
excellent basis for future model improvements. 

3.8 Compatibility with Existing Data Exchange Standards 

Even where models are not used within an integrated framework, a model’s outputs are 
rarely used in isolation.  Therefore, it would be beneficial to have common frameworks 
for exchanging data between different models and data processing/visualization tools.  
Agreed upon standards exist in specific disciplines, such as the DSS standard in hydrology 
and multiple standards for geospatial and other model data exchange (see Memo 3 for 
specific frameworks).  However, over the broad range of disciplines considered in this 
work, there are major differences in how data are represented in space and time, and 
how data are stored and transferred between models.  Thus, for most integrated 
modeling studies, it is not unusual for a large amount of analyst time to be spent in 
moving data across formats.  Where these data transfer processes cannot be automated, 
there are clear limitations to model integration.  To address this practical challenge, 
focused efforts and collaboration across developers in different areas are needed to 
provide tools that enable efficient exchange across a variety of models. 

3.9 Summary 

This chapter describes a set of actions that can help strengthen models, but in almost all 
cases require substantial additional resources to implement.  Indeed, in some cases, the 
methodologies are the subject of ongoing development and research, and their use may 
bring forth additional challenges.  For this reason, these actions are recommended for use 
in major modeling studies tied to large societally consequential decisions.  These 
additional actions include: i) peer review of model studies at various stages of 
implementation; ii) sensitivity analysis of models to key drivers including adjustable 
parameters and boundary conditions; iii) uncertainty analysis of model studies; 
iv) consideration of novel approaches to meet the sensitivity and uncertainty analysis needs 
of complex models and model frameworks; v) consideration of alternative models for 
model studies, where available; vi) performance of post-audits, i.e., review and evaluate 
historical model predictions in light of new field observations; and vii) development and 
compatibility with exchange standards to enable data sharing across models. 
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4 Broader Issues in Modeling 

Because models are employed within a larger decision-making framework in the Delta, it 
is helpful for modelers and model users to think beyond the strictly numerical and even 
conceptual frameworks addressed in Chapters 2 and 3.  Even when many of the steps 
identified in the preceding chapters are implemented, a model study may not achieve the 
support and credibility that it needs to be successful.  This document focuses on a set of 
issues that go beyond the technical aspects of model development and testing, to 
develop effective products that are useful for decision-makers and stakeholders. 
Attention to these issues will allow model results to be accessible to a broader audience, 
including the scientific and educational communities in the region. This chapter provides 
some general insights based on our experience on working with complex, multi-faceted 
modeling problems in the Delta region. 

4.1 Communication Strategy for Model Study 

At the inception phase of a modeling study, during project execution, and at its 
completion, it is important to think through the overall communication approach with 
model sponsors and stakeholders, and the larger community of technical experts and the 
general public.  Some of these steps are outlined elsewhere in this document and are 
summarized below: 

• At project inception: 

− Outline expected use and purpose of the model to sponsors and stakeholders; 
run through a model evaluation checklist. 

− Define conceptual model and communicate key processes and unknowns at the 
start of the study.  For major studies, solicit peer review and feedback on the 
conceptual model. 
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− Check on the availability of sufficient data that is legally and scientifically 
defendable. Implement a monitoring program if necessary. 

• During project execution: 

− Solicit peer review at key interim steps of the modeling process, focusing on 
items such as data available, assumptions, and methodology. 

− Update stakeholders on progress and changes in approach from initial plan. 

• At project completion: 

− Perform peer review of results, including calibration and evaluation, as well as 
further evaluation such as sensitivity and uncertainty analysis. 

− Prepare documentation on modeling study. 

− Review and update conceptual model and share with stakeholders.  Conduct 
workshop to share results. 

− Develop summary sheets for a broad, general audience. The summary should 
describe the problem and outcomes with minimal technical jargon. 

4.2 Consideration of Model Bias 

Modeling is a human activity and is inherently subject to bias. It is essential to 
acknowledge this bias and attempt to minimize it.  This general concern has been 
addressed in other published guidance as well (Glynn, 2008). Several biases worthy of 
attention in modeling of complex systems are listed below.  Not all of these biases can be 
addressed through the steps listed in Chapters 2 and 3, and it is important that modelers 
and model users keep these in mind when considering the practical consequences of a 
modeling study: 

• Confirmation bias. Modelers often focus on and highlight observations that confirm 
a pre-existing conceptual model and are less willing to seek data that will counter 
the model.  This is also termed as “group-think” and is associated with a resistance 
to new approaches for analysis. 

• Temporal insensitivity bias. Decision makers may have more interest in predictions 
that are one to two generations in the future than in the distant future. 

• Steady-state bias.  Modeling approaches often assume constancy in conditions or 
assume that known variability will continue into the future.  In the current literature, 
this assumption of stationarity is questioned most often by the increasing realization 
of climate change impacts on aquatic ecosystems.  However, this bias is not limited 
to climate change alone and could involve virtually any social or economic system. 

• Disciplinary bias. Modelers tend to focus on topics that they know most about even 
in the case of a framework where multiple models are being integrated. 

• Separation between man and nature. Mechanistic models of natural systems often 
do not explicitly account for changes in human behavior during the period of 
simulation.  Thus, regulatory actions are implemented in models as fixed drivers, but 
not as variables themselves.  There is growing interest in developing models that 
represent as dynamic actors, with responses changes as natural conditions change. 
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4.3 Results Gauged to Different Audiences 

Model findings will be used by and will need to satisfy the information needs of different 
audiences, from technical specialists to members of the general public. Therefore, it is 
important that modelers are also engaged at different levels of this process such that the 
right information is transferred to each audience. Furthermore, audiences may weigh in 
on a modeling study during various phases of the project.  Considerations for different 
audiences at project inception and completion are described below: 

• At project inception: 

− Technical specialists.  Such audiences will need to understand why the 
modeling is needed and the approach to be used.  Some of the items in the 
project inception checklist may serve to aid this goal.  It is also important to 
convey the novelty of a modeling exercise, and how it extends current thinking. 

− Stakeholders.  Such audiences will need to know the specific answers to be 
obtained through the modeling and whether similar answers can be developed 
without modeling. They will need to know the costs, time frames, and major 
unknowns.  Modelers should use this opportunity to highlight known and 
potential uncertainties, and how this might affect the outcome of the findings.  
Conceptual models can be used as a tool to highlight the areas of focus of the 
modeling exercise.  In communication with stakeholders, it is important to have 
clear definitions, and minimize use of jargon as much as possible. 

• Near completion: 

− Technical specialists.  Such audiences will expect to see many of the technical 
steps described in Chapters 2 and 3, such the basis of the model, specific 
assumptions used, the results of testing and evaluation of uncertainty.  It is also 
important to convey the novelty of a modeling exercise, and how it extends 
current thinking.  The presentation of key model studies as peer-reviewed 
publications provides additional credibility and also provides archival benefits 
for a modeling exercise.  Finally, audiences may want to understand next steps 
or the long-term plan for the study (additional modeling or data collection, etc.). 

− Stakeholders. Such audiences need a high level overview of key findings that 
can be quickly understood across broad range of people, expertise and 
experience.  Good results are simple and memorable and tell the key elements 
of a story in a compact manner.  A new or updated conceptual model is a good 
summary of the overall exercise. Additional graphical resources, beyond the 
conceptual model, may also be developed to help readers understand 
important findings.  It is helpful to describe what was achieved through the 
modeling and what remains unknown. 

4.4 Building Stakeholder Engagement and Trust 

With the growing adoption of models in support of socially consequential decisions, it is 
becoming increasingly important that models be considered credible by the stakeholder 
community.  This is a feature of modeling applications worldwide, and a trend away from 
technocratic decision-making to a more participatory framework (Voinov and Bosquet, 
2010; Voinov et al. 2016; Parrott et al., 2017).  Because of the complex and well-
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established interaction of many environmental processes in the Delta (e.g., water 
supplies and ecosystems), stakeholders for a modeling exercise include a range of 
participants, from government agencies at different levels (local, state, and federal) with 
different areas of focus, as well as non-governmental and individual participants with 
different levels of expertise and different interests. Decision-makers are often faced with 
situations where some stakeholders are not convinced of the benefits or the credibility of 
a model used to support a decision; thus, social as well as scientific credibility should be 
pursued for a model and related studies. Systematic engagement with stakeholders on 
various aspects of a modeling exercise—such as modeling purpose, conceptual model, 
calibration and evaluation, and peer review (as described above) – may provide such 
credibility and support over the long-term. 

Voinov et al. (2016) present a comprehensive review of stakeholder engagement 
processes and tools in recent modeling efforts.  They observe a demand for greater 
citizen engagement in planning and policy decisions (of which environmental modeling is 
a part) and note that tools and processes for sharing such data are rapidly evolving.  They 
also note rapid improvements in graphical tools and internet-based tools to display 
information and new social media formats for exchange of information. Citizens, less in 
awe of the mystique of models (or experts in general), are more able to participate and 
contribute to modeling processes through such mechanisms. These drivers, and a need 
for meeting greater stakeholder expectations, will (over time) change how models are 
packaged and presented.  The need for transparency in formulation, assumptions, and 
presentation of inputs and outputs will continue to grow. 

4.5 Model Utility and Friendliness 

As a model becomes used more frequently and/or used within a larger stakeholder 
community, the justification for resources to support documentation and solid practices 
becomes stronger and more obvious. Model accessibility, including utility and 
friendliness, has an influence on how frequently and/or broadly a model is used.  Below 
are design considerations for increasing model accessibility: 

User-friendliness and lower barriers to entry.  All models require certain levels of 
expertise and skills.  High barriers to entry and poor user-friendliness (e.g. poor 
documentation, arcane technology) limit the pool of people that will utilize and leverage 
the model.  Making models more user-friendly broadens that pool and brings greater 
value to society.  This consideration has been a factor in some of the more successful 
technical models in use today. 

Models to provide initial scoping results.  Simple and easy-to-build models can be useful 
as tools to quickly assess a situation with early results that provide initial scoping 
information.  These scoping results can provide a foundation for considering more 
complex models in subsequent analyses. These types of models can find broad audiences 
for smaller problems akin to the broad use of spreadsheet analyses today.  Models for 
initial scoping may be helpful to engage stakeholders and are preferable to a situation 
where even initial results are dependent on a model that takes a long time to develop. 
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Fun, Entertaining and Accessible.  Technology becomes more attractive when it is fun, 
entertaining and accessible.  Graphs that can be displayed on phones or tools that can be 
readily accessed on the web are thus more likely to be used.  Augmented reality (AR) 
tools that present model results in the context of the real world will allow greater 
engagement and understanding of outcomes. An example of this is the model SimBasin, 
which overlays the WEAP water resources modeling software. SimBasin uses a model of 
an actual basin and is designed to facilitate communications and engagement between 
stakeholders and scientist when considering different policy impacts. 

4.6 Model Sustainability over Long Time Horizons 

Models represent large intellectual and financial investments, but in most instances, their 
long-term viability is unknown.  Models are often developed to serve a specific need, and 
access to these models and related analyses rapidly diminishes over time.  For key 
foundational models and related efforts, long term sustainability should be addressed 
early in its life cycle to make best use of the investments being made.  This life cycle 
planning should identify the responsibilities, accountabilities, and resources needed to 
support a model over the long term, potentially over decades.  This life cycle planning 
should also contemplate development of new versions and ongoing model evaluation.  
Because of the resources and long-term commitments required to sustain a model over 
time, this is an issue that extends beyond the modelers and should be brought to the 
attention of decision and policy makers early in the process.  

4.7 Summary 

The technical strength of a model can be established through the steps presented in 
Chapters 2 and 3.  Nonetheless, there remain several non-technical issues that a modeler 
should address to meet the broader goals of a modeling exercise.  These non-technical 
issues are discussed in this chapter and include: development of a communication 
strategy for a modeling study, consideration of bias in many aspects of the model 
formulation, presentation of results across many audiences, building trust across the 
community that will be using the model results, overall user-friendliness of the modeling 
framework, and practices for sustaining the usefulness of a model over a long-term 
horizon. 
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5 Encouraging Adoption of Best 
Practices 

Many of the concepts identified in the preceding chapters are perhaps known to most 
modelers but are not widely adopted.  This may be due to time and resource limitations 
associated with virtually all modeling studies; this may also be due to the lack of specific 
expectations in the broader community of modelers and model users.  Thus, model users 
may not know what specific and reasonable requests to make of modelers to guide a 
model study toward greater credibility and usefulness. 

To encourage adoption of the best practices identified in this work, we provide three 
relatively compact summary sheets.  The purpose of the first sheet (Table 5), designed as 
a checklist to be employed at inception of a modeling effort, is to enable various 
participants to agree on the basic features of the work to be done. The purpose of the 
second sheet (Table 6) is to evaluate and score a modeling exercise upon completion.  A 
final sheet (Table 7) is designed to help evaluate the long-term sustainability of a 
modeling framework. 

The first sheet is designed with Yes/No responses, although additional narrative 
information can be provided. While there are no correct answers associated with the 
model study pre-audit, the questions are designed to flag issues that may need to be 
resolved before significant modeling study resources have been expended. 

The second sheet contains a list of questions that may be answered with narrative 
responses or with numerical scores.  If the numerical scoring approach is used, a model 
study with a higher score is more desirable.  A numerical scoring approach may be useful 
for comparing multiple model studies that employ the same type of domain modeling. 
However, this approach is of limited value when a unique or one-of-a-kind model study is 
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to be evaluated. The questions provided in these sheets are offered as starting points to 
be modified as needed for specific agencies or applications.  However, we expect many 
of the essential items will apply to most modeling studies. 

The third sheet is focused not on modeling per se, but on questions that help evaluate 
the long-term sustainability of a model framework.  It is not intended to evaluate a single 
study, but to assess whether the framework used in one or more studies is well 
supported into the future. 
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Table 5. Model Study Initial Appraisal 

Item Description Response

1 Do we know how the model results will be used? Yes/No 

2 Is the model to be used defined?  Yes/No 

3 Has a conceptual model been developed? Yes/No 

4 Have the criteria for selecting the model been defined? Yes/No 

5 Is an existing model going to be modified? Yes/No 

6 Is a new model to be developed? Yes/No 

7 Are the time frames known for initial model development, 
calibration, testing, and review? 

Yes/No 

8 Are data associated with intended model inputs available? Yes/No 

9 Does the model need calibration? Yes/No 

10 Are data associated with intended model outputs available (to 
support model calibration)? 

Yes/No 

11 Are time frames of the input and output data known and 
consistent with one another? 

Yes/No 

12 Are the errors in data measurements known? Yes/No 

13 Is the level of error in the expected results known? Yes/No 

14 Are the model stakeholders known? Yes/No 

15 Will stakeholders be part of the modeling process? Yes/No 

15 Have users of the model output met together? Yes/No 

16 Will documentation be prepared upon completion of the 
model? 

Yes/No 

17 Will the information embedded in questions 1-15 be used to 
prepare a memo describing the model's purpose? 

Yes/No 
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Table 6. Model Study Post-Completion Appraisal 

Item Description 

Response  
(Numeric Score or 

narrative) 

1 Is the model a new formulation or the application of an existing code? If a 
new formulation, what has been done to test and verify the code? 

2 Has a conceptual model been developed for this effort and has it been 
updated following completion? 

3 Are observed data used in the modeling exercise (input and output data) 
documented and available for review? 

4 Has the calibration approach been described? 

5 Has the model performance following calibration been adequately 
evaluated using test data? 

6 Has the sensitivity of major variables been evaluated? 

7 Has model output uncertainty been evaluated? 

8 Were any novel approaches used to evaluate the sensitivity and 
uncertainty of the model response to inputs? 

9 Were the model results compared and contrasted with other models (if 
available)? 

10 Does the model study documentation adequately explain the approach, 
assumptions, and findings? 

11 Was a peer review performed and responded to? 

12 What were the stakeholder’s reactions to the model results? 

13 Are the model summary documents easily understandable by a variety of 
audiences? 
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Table 7. Model Framework Life Cycle Evaluation 

Item Description Narrative Response  

1 Are all source codes and supporting files stored in a single location and 
archived in a manner that enables future access?  

2 Are the source codes documented, even if this documentation is not in 
the public domain? 

3 Is the model development dependent on a single individual? What is the 
long-term transition plan for the expertise in this model? 

4 Is the model framework applied by a community or by a single team?  Is 
there a mechanism to share knowledge about the model application over 
time, such as a virtual community, trainings, etc.? 

5 Is there a defined plan for making updates to the model framework?  

6 For a public-domain model framework, is there a funding mechanism to 
support staff that would work on the model? 

7 For a proprietary model framework, what is the mechanism to support 
the code development over the long-term? 
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