

Central Valley Project Water Temperature Modeling **Platform Project** Mid-Term Independent Peer Review July 19, 2022

Photo credit: John Hannon, Reclamation

WTMP Project Overview

Randi Field, Hydrologic Engineer Reclamation, Central Valley Operations Office

Outline

- Central Valley Project Overview
- Temperature Management
- Needs of the WTMP Project
- Project Plan/Schedule
- Highlighted project details

Central Valley Project

1940s – Shasta Dam, Friant Dam, Jones Pumping Plant, and Related Canals

1956 – Folsom Dam

1961 – Trinity Division added to import water into the CVP

1967 – San Luis Unit/State Water Project

1968 – San Felipe Unit

1979 – New Melones Dam

Salmonids

-Fall Run: 33 mm -Spring Run: 40 mm -Winter Run: 81 mm -Late-Fall Run: 130 mm - O. mykiss: 162 mm

Photo credit: USFWS

Photo credit: CDFW

Central Valley Habitat

- Dams around the rim of the valley floor isolate salmon from historical habitats
- Warm water conditions challenge spawning, incubation, and rearing
- Levees isolate fish from historical floodplain habitat
- Diversions impair passage for returning adults and may entrain juveniles
- Exports alter the hydrodynamics of the Delta

Federal FIsh Flow Releases West Side

Water Temperature Management

Elements of Temperature Management

Reference: Reclamation, 2017. Water Temperature Management in Reservoir-River Systems through Selective Withdrawal, Reference Technical Memorandum for Central Valley Project Operation, California. September.

Temperature Management Infrastructure

Types of Facilities for Selective Withdrawal

Multiple Intakes

Moveable Shutters

Shasta TCD

2015 Middle Gate Curtain

Photo credit: Reclamation

Folsom Dam

2015 De-ganging Shutters

Photo credit: Reclamation

Multi-Agency Temperature Management Process AMERICAN R AT HAZEL AVE BRIDGE (AHZ) Date from 07/01/2014 00:00 through 09/30/2014 00:00 Duration : 91 days

IN REPLY REPER TO

CVO-400 WTR-1.10

Dear Ms. Rea:

Temperature Modeling – Seasonal Plan

Hydrology Forecast

ume Modust - Mill be Date Oto Mill be Date Ang- Daily Oto
Oto Pe

Long-Term Meteorology Forecast

Operation Outlook

Boundary/Initial Conditions

Temperature Performance

Modernize Business Practice to Support the CVP Operations

- Expect high quality
- Build trust and confidence
- Optimize flexibility
- Design for compatibilities/efficiencies
- Plan for long-term horizon
- Enhance within agency expertise

Need High Quality

- Objective: Set High Standards
- Requirements:
 - Documentation: Robust Transparent
 - Assumptions: Explicit
 - Demonstrate Performance: Continuous Testing How well does the model perform?

Need Confidence and Trust - Tools add value and are useful

- Objective: Open process
- <u>https://www.usbr.gov/mp/bdo/cvp-wtmp.html</u>
- Requirements:
 - Access: Transparent Share information
 - Clarify Limitations: Informed consumer/user
 - New Data: Continual Improvements
 - Collaborative Forum: Modeling Technical Committee
 - Demonstrate Performance: Testing
 - Peer Review: Independent evaluation

Need Flexibility to respond

- Objective: Design for change
- Requirements:
 - Accessible Model: Modify code and adapt to change
 - Modeling Modes: Address both real-time, seasonal and long-term planning
 - Risk and Uncertainty Assessment: New capabilities

Need Compatibility and Efficiency for practical applications

- Objective: Leverage technology
- Requirements:
 - Framework: Robust structural organization/compatibility
 - Model Setup and Organization: Consistency
 - Data Management: Essential
 - Streamline Procedures: Ease of use and error reduction
 - Apply time saving techniques: Automate tasks when appropriate
 - Modeling Modes: Address both real-time, seasonal and long-term planning

Need to Build Tools for Longer-term Use with Stable Support

- Objective: Adapt to current funding and contracting constraints
- Requirements:
 - Design for Change: Anticipate future needs
 - Build Institutional Knowledge: Empower staff

Need to develop Expertise

- Objective: Broaden knowledge and technical capability
- Requirements:
 - Communication: Share information
 - Investment: Build knowledge base
 - Organization capacity building: Empower staff

Vision for WTMP Project

Goal: Deliver quality products to support Reclamation's mission – predict water temperature to support CVP operations and planning studies

- Modernize Systemwide Water Temperature Modeling and Analytics
- Develop to Professional Standards foster transparency
- Consistency cross uses: Real-Time, Seasonal, and Long-term Planning
- Accommodate technological advancements

WTMP Team

- Reclamation staff:
 - Bay Delta Office
 - Central Valley Operations Office
- Contracted services:
 - Watercourse, RMA, Cardno now part of Stantec, Eyasco, Camara, and Stantec
- Modeling Technical Committee (MTC):
 - Interested Agencies, Stakeholders, and Individuals

Collaborative Model Development Approach

- Working hypothesis Approach fosters:
 - Confidence
 - Transparency and trust
 - Problem solving synergy
 - A better model application
- Modeling Technical Committee (MTC):
 - Consistent "open forum" engagement
 - Timely project product review as available (Quarterly meetings)
 - Sub-group breakout meetings
 - Constructive input and comments
 - Future technical user group

Project Tasks

Phase I Activities

Task	Objective							
Task 1. Project Workplan	Develop workplan and schedule for the overall modeling project with							
	emphasis on Phase I – Task 1 through Task 10							
Task 2. Stakeholder	Outreach activities							
Involvement and Outreach								
Task 3. Develop Reclamation's	Technology transfer							
Institutional Knowledge								
Task 4. Data Management	Develop data management plan for Phases I and II of project							
Task 5. Model Framework	Develop a system-wide model framework for use throughout project area							
Design and Refinement.								
Task 6. Model	Select models for each of the elements of the framework							
Selection/Design								
Task 7. Data Development	Identify necessary input data to models and obtain necessary data							
Task 8. Model Development	Develop and revised or refined models							
Task 9. Calibration,	Calibrate and validate models							
Validation, and Sensitivity								
Task 10. Documentation	Documentation of Phase I model development							
Phase I								

Phase II Activities

Task	Objective
Task 11: Phase II Workplan	Develop a detailed workplan and schedule for Phase II – Task 11 through Task 17
Task 12: Implementation	Determine schedule for downstream/in-river simulation, real time/seasonal, and planning applications
Task 13: Estimation of	Develop and communicate sources of uncertainty in estimates of water
Uncertainty – Sources	temperature downstream of regulating reservoirs.
Task 14: Estimation of	Develop and communicate protocols for estimating uncertainty bounds in
Uncertainty – Protocols	estimates of water temperature downstream of regulating reservoirs. Task 14 will be combined with Task 13
Tool 15 Output	Develop extruct communication (viewelization tools and data presentation
Communication	approaches
Task 16: Documentation – Phase II	Documentation of Phase II activities
Task 17. Peer Review	Provide support for peer review of model components and overall framework.

WTMP Schedule

Торіс	7/21	10/21	1/22	4/22	7/22	10/22	1/23	4/23	7/23	10/23
MTC Orientation	•	-	-	-	-	-	-	-	-	-
Project Purposes, Goals, Anticipated Outcomes	•	•	-	-	-	-	-	-	-	-
Modeling Framework Selection	•	•	•	•	•	-	-	-	-	-
Water Temperature Model Selection	•	•	•	-	-	-	-	-	-	-
Consistency between System Model and Detailed Models	-	•	•	•	-	-	-	-	-	-
Common Model Preparation and Considerations	-	•	•	-	-	-	-	-	-	-
Sacramento/Trinity River Water Temperature Model	-	-	•	•	•	•	-	-	-	-
American River Water Temperature Model	-	-	-	•	•	•	•	-	-	-
Stanislaus River Water Temperature Model	-	-	-	-	•	•	•	•	-	-
Modeling Framework Implementation	•	-	•	-	-	•	-	-	-	-
Phase II Activities	-	-	-	-	•	•	•	•	•	•
Peer Review	-	-	-	-	•	-	-	-	•	-

Project and Peer Review Philosophy

• WTMP Project:

- Modernization of existing tools improves process workflow, reduce error, and afford enhanced communications for better decision making
- Collaboration will build trust through development
- Leverage the advantages of a using a Framework
- Evaluating uncertainty better informs interpretation of results
- Broad expertise promotes confidence and sustainability
- Independent Peer Reviews:
 - Strengthen confidence and enhance products with Mid-Term and Final reviews

Project Process Documentation

Water Temperature Modeling Platform Project Workplan

Overall Documentation Philosophy

- Target replication of methods and model results:
 - Robust
 - Transparent assumptions
 - Detailed
- Guidance:
 - EPA <u>https://www.epa.gov/sites/default/files/2015-04/documents/cred_guidance_0309.pdf</u>
 - CWEMF <u>https://cwemf.org/wp/wp-content/uploads/2021/11/Modeling-Protocols-Report-Final-11-19-2021.pdf</u>

Sacramento/Trinity River System

- Trinity Lake to Helena
- Whiskeytown to Clear Creek confluence
- Lake Shasta to Red Bluff

American River System

Folsom Reservoir to
 American River confluence

Stanislaus River System

 New Melones Reservoir to San Joaquin River confluence

Model Spatial and Temporal Considerations

Model Type – Element Model

- Represents one element of a multi-component system.
 - Statistical Model
 - Physically Based Model

Model Type – Modeling System

- Composed of individual element models
 - Same time-step
 - Solved simultaneously
 - Fixed solution scheme

Model Type – Modeling Framework

- Integrated use of individual or multiple element models
 - Ability to "turn on or off" models
 - Customizable
 - Information sharing links
 - Model integrity and consistency

WTMP Development is On-Going

 Work products are preliminary and will be finalized at the end of the project

Mid-Term Peer Review Summer 2022

- Phase I Shasta/Keswick
- Request to Panel: Identify improvements to data development, calibration/validation process, and representation of the system
- WTMP action: Address suggestions within scope of project and identify opportunities for future efforts
- Final Peer Review Summer 2023
 - Phase I Trinity, Whiskeytown, American, and Stanislaus
 - Phase II Model Application

On-Going Research

- Reclamation's Science and Technology Grant Program:
 - Evaluating Water Temperature Modeling and Prediction in the Sacramento River Basin
 - Evaluate existing meteorological forecasting methods and skill
 - Test new methods to improve meteorological inputs and inflow temperature
- Delta Stewardship Council: Pending
 - Shasta TCD local flow patterns
 - ADCP and ADVP testing

Temperature Models and Climate Variability

• How is the WTMP addressing this?

- Model Selection: Numerical Model Criteria
 - Physically based models
 - Sensitivity testing
- Model Development: Planning Level Model
 - Climate variability and sea level rise assumptions
- Routine model performance assessment
 - Phase II
 - Re-calibration of models

Presentation Layout

 Morning discussion covers the fundamentals of the model development effort:

Phase I

- Model Framework Selection
- Model Selection
- Data Management
- Afternoon discussion highlights Shasta/Keswick implementation:
 - Phase I
 - Data Development
 - Model Development, Calibration and Validation

