

Model Selection

Randi Field, Hydrologic Engineer Reclamation, Central Valley Operations Office

Model Selection Philosophy

Methodically identify and document:

- 1. Needs of water temperature models for the WTMP
- 2. Selection criteria
- 3. Candidate models
- 4. Model evaluation and comparison
- Solicit feedback from the MTC

Water Temperature Modeling Platform

• Objective:

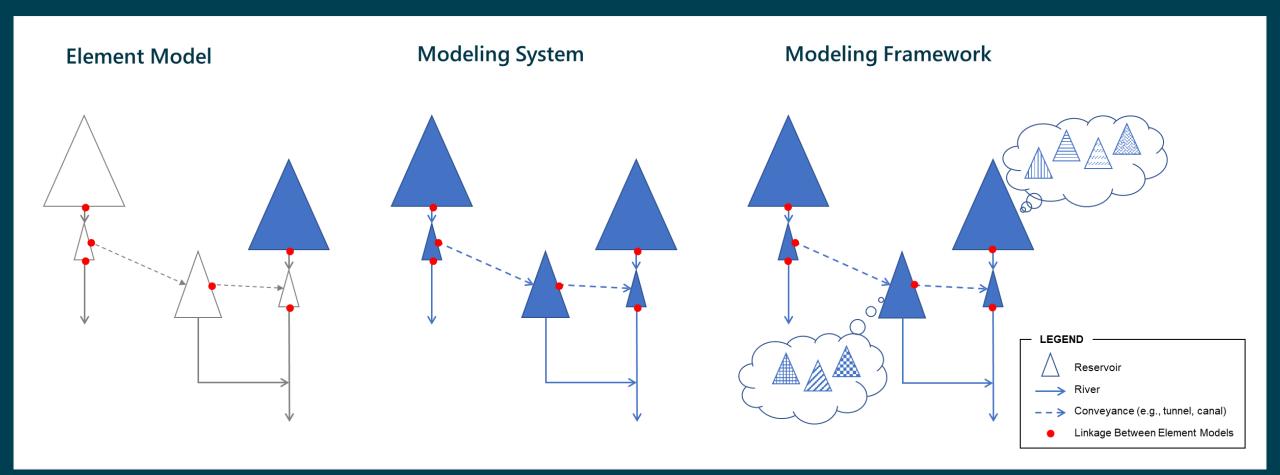
• Effective and efficient management of resources for downstream regulatory and environmental requirements within the context of an uncertain environment.

• Goal:

 Provide realistic predictions of downstream water temperatures with sufficient confidence to carry out the necessary planning for seasonal, real-time, and long-term study applications while also describing situational risk and uncertainty.

Role of Models in WTMP

Models represent reservoir and rivers


- <u>System models</u>
 - represent networks of reservoir and river reaches
 - can be used alone or in concert with discrete component models

• <u>Element models</u>

- represent discrete reservoir or river reaches (more or less complex)
- can be used alone or in concert with a system model
- These models reside in a modeling framework

WTMP: Modeling Framework and Models

Model Dimensionality

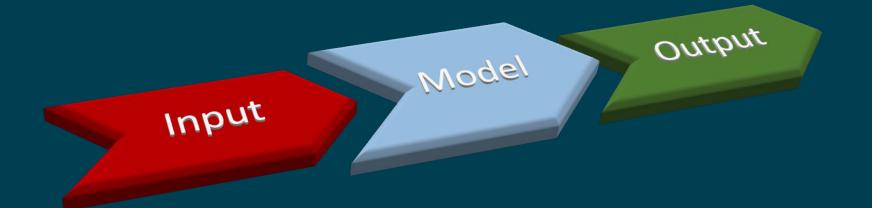
- 1-D and 2-D models were selected and tested to represent the reservoirs and riverine systems
- 3-D models were considered, but deferred due to increased data collection, complexity, and computational run time

Model Selection Criteria: Subcategories

- <u>Numerical Model Criteria</u> representation of physical system in a model
- <u>Linkage</u> addresses if models are discrete (reach specific) or systemwide and if framework compatible
- Input/Output (I/O) model pre- and post-processors and data structures
- <u>Support</u> user specific information
- <u>CVP Features</u> ability to represent specific features CVP
- <u>Qualitative</u> additional qualitative criteria

Numerical Model Criteria

Criteria	Notes/Comments	Priority
1. Model type	Reservoir (vertical profile and outflow temperature), River	Н
(River/Reservoir)	(longitudinal temperature)	
2. Number of dimensions	Tradeoffs between lower/higher dimensional representations	Н
(1, 2)	and computational efficiency	
3. System geometric	Appropriate spatial resolution to represent reservoir/river	Н
representation	element	
4. Dynamic flow model	Ability to capture flow conditions over a range of time scales	Н
	(hours, days, months)	
5. Water temperature	Comprehensive heat budget formulation	Н
representation		
6. Time step	Sub-daily required	Н
7. Computational	Computation time considered for screening analyses as well	Н
performance consideration	as planning analyses	


Linkage Criteria

Criteria	Notes/Comments	Priority
8. System Model or	Model can represent entire system (reservoir and river	Μ
discrete reach	hydrology and water temperature) or a discrete segment/element of system (e.g., reservoir model)	
 Modeling framework compatible 	Model can share I/O with other models in a framework	H/M

Input/Output (I/O) Criteria

Criteria	Notes/Comments	Priority
10. Pre-processor	Assess and manage inputs	Н
11. Post-processor	Assess, visualize, and report output (graphical and tabular)	Н
 Data structure facilitates model calibration/application 	To facilitate modeling, calibration, and error detection	L

Support Criteria

Criteria	Notes/Comments	Priority
13. Model applications	Model been used in applications similar to this project.	Н
14. Actively supported	Actively supported models	Н
 Public domain, peer reviewed, and accessible model modifications 	To assess critical model assumptions, verify model modifications, and provide model transparency	Н
16. Fee	Model is free or is there a minimal cost for software	Н
17. Documentation	Technical reports on model construction (equations, solution methods, testing) and user manuals	Н
 Training and/or user group 	Support ongoing model application	M/L

CVP Features Criteria

Criteria	Notes/Comments	Priority
19. Specific features:	Represent current or planned project facilities	-
A. Temperature control curtains	Lewiston Lake and Whiskeytown Lake	Н
B. Submerged weirs/dams	Submerged dam upstream of New Melones Dam	Н
C. Selective withdrawal	Shasta Lake and Folsom Lake	Н
D. Automated simulations to target tailbay temperature	Model target reservoir release temperatures	Н
E. Automated simulations to target river temperature	Model target downstream river temperatures	Н
F. Shade	Topographic and/or riparian vegetation shade	М

Qualitative Criteria

Criteria	Notes/Comments	Priority
20. Qualitative	-	-
A. Ease of use	Relatively easily operated (data input, model run, and output accessed)	Μ
B. Credibility	A history of successful use and previous peer review or institutional review/support	Н
C. Easy to incorporate uncertain input parameters	External (preferred) rather than internal	Μ
D. Collaboration with model developers	Model developers have an interest in collaboration	Μ

Model Selection

- Modeling Objective(s)
- Model Types
 - System
 - Element
 - Reservoir
 - River
 - Framework approach

Model Selection Criteria for the WTMP

- Purpose: screen potential models for selection and implementation in the WTMP
- Criterion assessed, where feasible, as <u>high/medium</u> /<u>low</u> priority
- Criterion identified as "<u>required</u>" and "<u>preferred</u>"
- Selection criteria are important and necessary to ensure models fit project need
- Computationally efficient
- Selected components with higher resolution

Model Identification for the WTMP

- Identified system models and component models (reservoir and river models)
- System Models: CE-QUAL-W2, DYRESM, HEC-5Q, HEC-ResSim, Riverware
- Component Models
 - Reservoir: CE-QUAL-W2, DYRESM, HEC-5Q, HEC-ResSiM, Riverware
 - River: CE-QUAL-RIV1, CE-QUAL-W2, EPD-Riv1, Heat Source, HEC-5Q, HEC-RAS, HEC-ResSim, QUAL-2K, RAFT, RBM10, RMA2/RMA4, Riverware, RMS(ADYN/RQUAL)
- Model information (Model Selection TM Tables 3-1, 3-2)
- Excluded models (Model Selection TM Tables 3-3, 3-4)

Model Evaluation for the WTMP

- Broad range of quantitative and qualitative criteria to evaluate range of identified models for inclusion into the WTMP
- Process
 - 1. Assess criteria
 - System model
 - Component models
 - Reservoir
 - River
 - 2. Identify models that did not include key processes/representations
 - Numerical model criteria
 - Central Valley Project (CVP) Features
 - Some overlap with other criteria groups

Model Evaluation for the WTMP

- Process
 - 3. Identify models that best met WTMP objective
 - Linkage
 - Input/Output
 - Modeling support
 - Qualitative
 - 4. Identify potential models
 - <u>System</u>: HEC-ResSim
 - Component:
 - <u>Reservoir</u>: HEC-ResSim, CE-QUAL-W2
 - <u>River</u>: Heat Source, HEC-RAS, HEC-ResSim, and RAFT

System and Reservoir Models Reviewed

> Based on Numerical Model Criteria

Criteria	Comments	Need	CE-QUAL-W2	DYRESM	HEC-5Q	HEC-ResSim	Riverware
Model type (Discrete/ System)	Is the model a discrete model or a system model?	NA	Discrete	Discrete	System	System	System
Model type (River/ Reservoir)	Is the model designed for predicting vertical distributions and release-water temperatures in a reservoir reach?	Require	Yes	Yes	Yes	Yes	Yes
Short-term forecasting	Within season (days, weeks, months)	Require	Yes	Yes	Yes	Yes	Yes
Long-term planning	Extended simulations (years, decades)	Require	Yes	Yes	Yes	Yes	Yes
Number of dimensions (1, 2)		NA	2	1	1	1	1
System geometric representation	Principal dimension(s): longitudinal/ vertical	NA	Longitudinal/ vertical	Vertical	Longitudinal	Longitudinal	Vertical
System geometric representation	Detailed vertical resolution? (Yes/ No)	Require	Yes	Yes	Yes	Yes	No
Dynamic flow model	Yes/ No	Prefer	Yes	No	Yes	Yes	No
Water temperature representation	Full heat budget: Yes/ No	Require	Yes	Yes	No	Yes	Yes
Time step (capable of sub-daily)	Yes/ No	Require	Yes	Yes	Yes	Yes	Yes
Computational performance consideration	Faster/ Slower	NA	Slower	Faster	Faster	Faster	Unknown

Model Recommendation and Decision

- System model
 - HEC-ResSim
- Component models
 - Reservoir Model
 - HEC-ResSim
 - CE-QUAL-W2
 - River Model
 - HEC-ResSim
- Accessible Support

Model Selection Documentation

- Technical Memorandum
 - Water Temperature Modeling Platform: Model Selection

